Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(6): e0131594, 2015.
Article in English | MEDLINE | ID: mdl-26121165

ABSTRACT

BACKGROUND: The increase in prevalence of asthma and atopic diseases in Western countries has been linked to aspects of microbial exposure patterns of people. It remains unclear which microbial aspects contribute to the protective farm effect. OBJECTIVE: The objective of this study was to identify bacterial groups associated with prevalence of asthma and atopy, and to quantify indoor exposure to some of these bacterial groups. METHODS: A DNA fingerprinting technique, denaturing gradient gel electrophoresis (DGGE), was applied to mattress dust samples of farm children and control children in the context of the GABRIEL Advanced study. Associations between signals in DGGE and atopy, asthma and other allergic health outcomes were analyzed. Quantitative DNA based assays (qPCR) for four bacterial groups were applied on the dust samples to seek quantitative confirmation of associations indicated in DNA fingerprinting. RESULTS: Several statistically significant associations between individual bacterial signals and also bacterial diversity in DGGE and health outcomes in children were observed. The majority of these associations showed inverse relationships with atopy, less so with asthma. Also, in a subsequent confirmation study using a quantitative method (qPCR), higher mattress levels of specifically targeted bacterial groups - Mycobacterium spp., Bifidobacteriaceae spp. and two different clusters of Clostridium spp. - were associated with a lower prevalence of atopy. CONCLUSION: DNA fingerprinting proved useful in identifying bacterial signals that were associated with atopy in particular. These findings were quantitatively confirmed for selected bacterial groups with a second method. High correlations between the different bacterial exposures impede a clear attribution of protective effects to one specific bacterial group. More diverse bacterial flora in mattress dust may link to microbial exposure patterns that protect against development of atopic diseases.


Subject(s)
Asthma/immunology , Bacteria/immunology , Environmental Exposure/adverse effects , Hypersensitivity, Immediate/immunology , Age Factors , Air Pollution, Indoor/adverse effects , Asthma/epidemiology , Asthma/microbiology , Bacteria/classification , Bacteria/genetics , Biodiversity , Child , Female , Humans , Hypersensitivity, Immediate/epidemiology , Hypersensitivity, Immediate/microbiology , Male , Molecular Typing , Qualitative Research , Risk Factors
2.
Water Res ; 38(20): 4424-34, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15556217

ABSTRACT

We studied the population dynamics of nitrifying bacteria during the development of biofilms up to 233 or 280 days on polyvinylchloride pipes connected to two full-scale drinking water distribution networks supplying processed and chloraminated surface water. The numbers of nitrifiers in biofilms were enumerated at intervals of 10-64 days by the most probable number (MPN) method at waterworks and at several study sites in distribution network areas. The numbers of nitrifiers increased towards the distal sites. The highest detected MPN counts of ammonia-oxidizing bacteria (AOB) for study areas 1 and 7 were 500 MPN cm(-2) and 1.0 x 10(6) MPN cm(-2), and those of nitrite-oxidizing bacteria (NOB) 96 MPN cm(-2) and 2.2 x 10(3) MPN cm(-2), respectively. The diversity of AOB was determined by PCR amplifying, cloning and sequencing the partial ammonia monooxygenase (amoA) gene of selected biofilm samples presenting different biofilm ages. The PCR primers used, A189 and A682, also amplified a fragment of particulate methane monooxygenase (pmoA) gene of methane-oxidizing bacteria. The majority of biofilm clones (24 out of 30 studied) contained Nitrosomonas amoA-like sequences. There were only two pmoA-like sequences of Type I methanotrophs, and four sequences positioned in amoA/pmoA sequence groups of uncultured bacteria. From both study area very similar or even completely identical Nitrosomonas amoA-like sequences were obtained despite of high difference in AOB numbers. The results show that the conditions in newly formed biofilms in drinking water distribution systems favor the growth of Nitrosomonas-type AOB.


Subject(s)
Biofilms , Nitrosomonas/growth & development , Oxidoreductases/genetics , Water Supply/standards , Ammonia/metabolism , DNA, Bacterial/analysis , Environmental Monitoring , Polymerase Chain Reaction , Population Dynamics , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...