Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Biofactors ; 50(3): 558-571, 2024.
Article in English | MEDLINE | ID: mdl-38149762

ABSTRACT

Erythrocytes play a fundamental role in oxygen delivery to tissues and binding to inflammatory mediators. Evidences suggest that dysregulated erythrocyte function could contribute to the pathophysiology of several neurodegenerative diseases. We aimed to evaluate changes in morphological, biomechanical, and biophysical properties of erythrocytes from amyotrophic lateral sclerosis (ALS) patients, as new areas of study in this disease. Blood samples were collected from ALS patients, comparing with healthy volunteers. Erythrocytes were assessed using atomic force microscopy (AFM) and zeta potential analysis. The patients' motor and respiratory functions were evaluated using the revised ALS Functional Rating Scale (ALSFRS-R) and percentage of forced vital capacity (%FVC). Patient survival was also assessed. Erythrocyte surface roughness was significantly smoother in ALS patients, and this parameter was a predictor of faster decline in ALSFRS-R scores. ALS patients exhibited higher erythrocyte stiffness, as indicated by reduced AFM tip penetration depth, which predicted a faster ALSFRS-R score and respiratory subscore decay. A lower negative charge on the erythrocyte membrane was predictor of a faster ALSFRS-R and FVC decline. Additionally, a larger erythrocyte surface area was an independent predictor of lower survival. These changes in morphological and biophysical membrane properties of ALS patients' erythrocytes, lead to increased cell stiffness and morphological variations. We speculate that these changes might precipitate motoneurons dysfunction and accelerate disease progression. Further studies should explore the molecular alterations related to these observations. Our findings may contribute to dissect the complex interplay between respiratory function, tissue hypoxia, progression rate, and survival in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Erythrocytes , Microscopy, Atomic Force , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/blood , Female , Middle Aged , Male , Erythrocytes/metabolism , Erythrocytes/pathology , Aged , Surface Properties , Erythrocyte Membrane/metabolism , Adult , Vital Capacity , Disease Progression
2.
Mov Disord ; 38(8): 1535-1541, 2023 08.
Article in English | MEDLINE | ID: mdl-37307400

ABSTRACT

BACKGROUND: Chorea-acanthocytosis (ChAc) is associated with mutations of VPS13A, which encodes for chorein, a protein implicated in lipid transport at intracellular membrane contact sites. OBJECTIVES: The goal of this study was to establish the lipidomic profile of patients with ChAc. METHODS: We analyzed 593 lipid species in the caudate nucleus (CN), putamen, and dorsolateral prefrontal cortex (DLPFC) from postmortem tissues of four patients with ChAc and six patients without ChAc. RESULTS: We found increased levels of bis(monoacylglycerol)phosphate, sulfatide, lysophosphatidylserine, and phosphatidylcholine ether in the CN and putamen, but not in the DLPFC, of patients with ChAc. Phosphatidylserine and monoacylglycerol were increased in the CN and N-acyl phosphatidylserine in the putamen. N-acyl serine was decreased in the CN and DLPFC, whereas lysophosphatidylinositol was decreased in the DLPFC. CONCLUSIONS: We present the first evidence of altered sphingolipid and phospholipid levels in the brains of patients with ChAc. Our observations are congruent with recent findings in cellular and animal models, and implicate defects of lipid processing in VPS13A disease pathophysiology. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Neuroacanthocytosis , Animals , Humans , Neuroacanthocytosis/genetics , Neuroacanthocytosis/metabolism , Phospholipids/metabolism , Phosphatidylserines/metabolism , Vesicular Transport Proteins/genetics , Brain/metabolism
3.
J Microbiol Methods ; 211: 106772, 2023 08.
Article in English | MEDLINE | ID: mdl-37343840

ABSTRACT

Numerous genotyping techniques based on different principles and with different costs and levels of resolution are currently available for understanding the transmission dynamics of brucellosis worldwide. We aimed to compare the population structure of the genomes of 53 Brazilian Brucella abortus isolates using eight different genotyping methods: multiple-locus variable-number tandem-repeat analysis (MLVA8, MLVA11, MLVA16), multilocus sequence typing (MLST9, MLST21), core genome MLST (cgMLST) and two techniques based on single nucleotide polymorphism (SNP) detection (parSNP and NASP) from whole genomes. The strains were isolated from six different Brazilian states between 1977 and 2008 and had previously been analyzed using MLVA8, MLVA11, and MLVA16. Their whole genomes were sequenced, assembled, and subjected to MLST9 MLST21, cgMLST, and SNP analyses. All the genotypes were compared by hierarchical grouping method based on the average distances between the correlation matrices of each technique. MLST9 and MLST21 had the lowest level of resolution, both revealing only four genotypes. MLVA8, MLVA11, and MLVA16 had progressively increasing levels of resolution as more loci were analyzed, identifying 6, 16, and 44 genotypes, respectively. cgMLST showed the highest level of resolution, identifying 45 genotypes, followed by the SNP-based methods, both of which had 44 genotypes. In the assessed population, MLVA was more discriminatory than MLST and was easier and cheaper to perform. SNP techniques and cgMLST provided the highest levels of resolution and the results from the two methods were in close agreement. In conclusion, the choice of genotyping technique can strongly affect one's ability to make meaningful epidemiological conclusions but is dependent on available resources: while the VNTR based techniques are more indicated to high prevalence scenarios, the WGS methods are the ones with the best discriminative power and therefore recommended for outbreaks investigation.


Subject(s)
Brucella abortus , Brucellosis , Humans , Brucella abortus/genetics , Genotyping Techniques , Genotype , Multilocus Sequence Typing/methods , Brucellosis/epidemiology , Minisatellite Repeats , Phylogeny
4.
Cell Immunol ; 384: 104661, 2023 02.
Article in English | MEDLINE | ID: mdl-36621093

ABSTRACT

Multiple sclerosis is an autoimmune disease that affects the central nervous system. Because of its complexity and the difficulty to treat, searching for immunoregulatory responses that reduce the clinical signs of disease by non-aggressive mechanisms and without adverse effects is a scientific challenge. Herein we propose a protocol of oral tolerance induction that prevented and controlled MOG-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The genetically modified strain HSP65-producing Lactococcus lactis was orally administered for 5 consecutive days either before or during disease development in mice. Both protocols of feeding HSP65 resulted in significant reduction in the clinical score of EAE. Frequencies of LAP+CD4+Foxp3- regulatory T cells were higher in spleens and inguinal lymph nodes of fed mice. In addition, intravital microscopy showed that adherence of leukocytes to venules in the spinal cord was reduced in orally treated mice. Oral treatment with HSP65-producing L.lactis prevented leukocytes to leave the secondary lymphoid organs, therefore they could not reach the central nervous system. Despite the inhibition of pathological immune response that drive EAE development, activated T cells were at normal frequencies suggesting that oral tolerance did not induce general immunosuppression, but it led to specific control of pathogenic T cells. Our results indicate a novel therapeutic strategy to prevent and control autoimmune diseases such as multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Lactococcus lactis , Multiple Sclerosis , Mice , Animals , Mice, Inbred C57BL , Spinal Cord
5.
Stem Cell Rev Rep ; 19(4): 906-927, 2023 05.
Article in English | MEDLINE | ID: mdl-36585572

ABSTRACT

Hematopoietic stem cells are maintained in a specialized microenvironment, known as the 'niche', within the bone marrow. Understanding the contribution of cellular and molecular components within the bone marrow niche for the maintenance of hematopoietic stem cells is crucial for the success of therapeutic applications. So far, the roles of crucial mechanisms within the bone marrow niche have been explored in transgenic animals in which genetic modifications are ubiquitously introduced in the whole body. The lack of precise tools to explore genetic alterations exclusively within the bone marrow prevents our determination of whether the observed outcomes result from confounding effects from other organs. Here, we developed a new method - 'whole bone subcutaneous transplantation'- to study the bone marrow niche in transgenic animals precisely. Using immunolabeling of CD45.1 (donor) vs. CD45.2 (recipient) hematopoeitic stem cells, we demonstrated that hematopoeitic stem cells from the host animals colonize the subcutaneously transplanted femurs after transplantation, while the hematopoietic stem cells from the donor disappear. Strikinlgy, the bone marrow niche of these subcutaneously transplanted femurs remain from the donor mice, enabling us to study specifically cells of the bone marrow niche using this model. We also showed that genetic ablation of peri-arteriolar cells specifically in donor femurs reduced the numbers of hematopoietic stem cells in these bones. This supports the use of this strategy as a model, in combination with genetic tools, to evaluate how bone marrow niche specific modifications may impact non-modified hematopoietic stem cells. Thus, this approach can be utilized for genetic manipulation in vivo of specific cell types only within the bone marrow. The combination of whole bone subcutaneous transplantation with rodent transgenic models will facilitate a more precise, complex and comprehensive understanding of existing problems in the study of the hematopoietic stem cell bone marrow niche.


Subject(s)
Bone Marrow , Hematopoietic Stem Cell Transplantation , Mice , Animals , Hematopoietic Stem Cells/metabolism , Bone Marrow Transplantation , Bone and Bones
6.
Probiotics Antimicrob Proteins ; 15(5): 1327-1341, 2023 10.
Article in English | MEDLINE | ID: mdl-36066817

ABSTRACT

The poultry sector demands alternative additives to antibiotics that can be used as performance enhancers. Therefore, this experiment was conducted to evaluate the probiotics effects on performance, intestinal health, and redox status of 720 broilers exposed to heat stress from 15 days of age. Eight dietary treatments were evaluated: basal diet (BD) without antibiotic and probiotic (T1); BD supplemented with antibiotic zinc bacitracin (T2), BD supplemented with commercial probiotic of Bacillus subtilis DSM 17,299 (T3), BD supplemented with non-commercial probiotic of Lactococcus lactis NCDO 2118, Lactobacillus delbrueckii CNRZ 327, Escherichia coli CEC15, or Saccharomyces boulardii (T4 to T7), and BD simultaneously supplemented with the four non-commercial probiotics (T8). Feed intake, weight gain, and feed conversion were determined in the period from 1 to 42 days of age. Carcass and cuts yield, abdominal fat deposition, cloacal temperature, weight and length of intestine, activity of myeloperoxidase and eosinophilic peroxidase enzymes in the jejunum, jejunal histomorphometry, relative gene expression in the jejunum (occludin, zonulin, interleukin-8, cholecystokinin, ghrelin, and heat shock protein-70), and liver (heat shock protein-70), in addition to malondialdehyde level and superoxide dismutase activity in the intestine, liver, and blood, were measured in broilers at 42 days old. As main results, broilers fed T1 diet exhibited lower weight gain (3.222 kg) and worse feed conversion (1.70 kg/kg). However, diets containing non-commercial probiotics resulted in up to 3.584 kg of weight gain and improved feed conversion by up to 10%, similar to that observed for broilers of the T2 and T3 groups.


Subject(s)
Chickens , Probiotics , Animals , Chickens/metabolism , Dietary Supplements , Diet , Heat-Shock Response , Anti-Bacterial Agents/metabolism , Weight Gain , Heat-Shock Proteins/metabolism , Animal Feed/analysis
7.
Angiogenesis ; 26(1): 129-166, 2023 02.
Article in English | MEDLINE | ID: mdl-36183032

ABSTRACT

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Subject(s)
Neoplasms , Neuroglia , Humans , Retrospective Studies , Neuroglia/metabolism , Schwann Cells/metabolism , Schwann Cells/pathology , Pericytes , Tumor Microenvironment/physiology , Neoplasms/pathology
8.
Viruses ; 14(10)2022 10 21.
Article in English | MEDLINE | ID: mdl-36298869

ABSTRACT

BACKGROUND: The correct understanding of the epidemiological dynamics of COVID-19, caused by the SARS-CoV-2, is essential for formulating public policies of disease containment. METHODS: In this study, we constructed a picture of the epidemiological dynamics of COVID-19 in a Brazilian population of almost 17000 patients in 15 months. We specifically studied the fluctuations of COVID-19 cases and deaths due to COVID-19 over time according to host gender, age, viral load, and genetic variants. RESULTS: As the main results, we observed that the numbers of COVID-19 cases and deaths due to COVID-19 fluctuated over time and that men were the most affected by deaths, as well as those of 60 or more years old. We also observed that individuals between 30- and 44-years old were the most affected by COVID-19 cases. In addition, the viral loads in the patients' nasopharynx were higher in the early symptomatic period. We found that early pandemic SARS-CoV-2 lineages were replaced by the variant of concern (VOC) P.1 (Gamma) in the second half of the study period, which led to a significant increase in the number of deaths. CONCLUSIONS: The results presented in this study are helpful for future formulations of efficient public policies of COVID-19 containment.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Middle Aged , Adult , SARS-CoV-2/genetics , Pandemics , Brazil/epidemiology , COVID-19/epidemiology , Nasopharynx
9.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142296

ABSTRACT

Alterations in the levels of serum sphingolipids and phospholipids have been reported in Gaucher disease and in Parkinson's disease, suggesting a potential role of these lipids as biomarkers. This project's objective is to detect novel associations and novel candidate biomarkers in the largest Spanish Gaucher and Parkinson diseases of the Iberian Peninsula. For that, 278 participants were included: 100 sporadic Parkinson's patients, 70 Gaucher patients, 15 GBA1-mutation-carrier Parkinson's patients and 93 controls. A serum lipidomics array including 10 phospholipid groups, 368 species, was performed using high-performance liquid chromatography-mass spectrometry. Lipid levels were compared between groups via multiple-regression analyses controlling for clinical and demographic parameters. Additionally, lipid levels were compared within the Gaucher and Parkinson's groups controlling for medication and/or disease severity. Results were controlled for robustness by filtering of non-detectable lipid values. There was an increase in the levels of phosphatidylcholine, with a simultaneous decrease in lyso-phosphatidylcholine, in the Gaucher, Parkinson's and GBA1-mutation-carrier Parkinson's patients vs. controls. Phosphatidylethanolamine, lyso- and plasmalogen-phosphatidylethanolamine were also increased in Gaucher and Parkinson's. Gaucher patients also showed an increase in lyso-phosphatidylserine and phosphatidylglycerol. While in the Gaucher and Parkinson's groups, velaglucerase alpha and dopamine agonists, respectively, showed positive associations with the lipid changes, miglustat treatment in Gaucher patients normalized the altered phosphatidylcholine/lyso-phosphatidylcholine ratio. In conclusion, Gaucher and Parkinson's patients showed changes in various serum phospholipid levels when compared with healthy controls, further supporting the role of such lipids in disease development and, possibly, as putative biomarkers. This hypothesis was reinforced by the normalizing effect of miglustat, and by controlling for data robustness, even though the limited number of participants, especially in the sub-distribution by treatment groups in GD requires validation in a larger number of patients.


Subject(s)
Gaucher Disease , Parkinson Disease , 1-Deoxynojirimycin/analogs & derivatives , Biomarkers , Dopamine Agonists , Gaucher Disease/complications , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Humans , Mutation , Parkinson Disease/complications , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Phosphatidylcholines , Phosphatidylethanolamines , Phosphatidylglycerols , Phosphatidylserines , Plasmalogens , Sphingolipids
10.
Neurosci Biobehav Rev ; 137: 104645, 2022 06.
Article in English | MEDLINE | ID: mdl-35367513

ABSTRACT

Humans are ubiquitously exposed to neurotoxicants in air pollution, causing increased risk for psychiatric outcomes. Effects of prenatal exposure to air pollution on early emerging behavioral phenotypes that increase risk of psychopathology remain understudied. We review animal models that represent analogues of human behavioral phenotypes that are risk markers for internalizing and externalizing problems (behavioral inhibition, behavioral exuberance, irritability), and identify commonalities among the neural mechanisms underlying these behavioral phenotypes and the neural targets of three types of air pollutants (polycyclic aromatic hydrocarbons, traffic-related air pollutants, fine particulate matter < 2.5 µm). We conclude that prenatal exposure to air pollutants increases risk for behavioral inhibition and irritability through distinct mechanisms, including altered dopaminergic signaling and hippocampal morphology, neuroinflammation, and decreased brain-derived neurotrophic factor expression. Future studies should investigate these effects in human longitudinal studies incorporating complex exposure measurement methods, neuroimaging, and behavioral characterization of temperament phenotypes and neurocognitive processing to facilitate efforts aimed at improving long-lasting developmental benefits for children, particularly those living in areas with high levels of exposure.


Subject(s)
Air Pollutants , Air Pollution , Prenatal Exposure Delayed Effects , Air Pollutants/analysis , Air Pollutants/toxicity , Cognition , Female , Humans , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/psychology
11.
J Pers ; 90(3): 393-404, 2022 06.
Article in English | MEDLINE | ID: mdl-34536231

ABSTRACT

OBJECTIVE: Individuals with high levels of psychopathic traits are often characterized by aberrant reinforcement learning. This type of learning, which implicates making choices that maximize rewards and minimize punishments, may be affected by acute stress. However, how acute stress affects reinforcement learning in individuals with different levels of psychopathic traits is not well-understood. Here, we investigated whether and how individual differences in psychopathic traits modulated the impact of acute stress on reward and punishment learning. METHOD: Sixty-two male participants from a university sample completed the Self-Report Psychopathy-Short Form scale and performed a reinforcement-learning task involving monetary gains and losses whilst under acute stress and control conditions. RESULTS: Individual differences in psychopathic traits modulated the impact of acute stress on behavioral performance toward obtaining gains, but not toward avoiding losses. As levels of psychopathic traits increased, the impairing effect of acute stress on reward learning decreased. Specifically, acute stress impaired performance toward seeking gains to a larger extent in individuals with lower levels of psychopathic traits than in individuals with higher levels of these traits. CONCLUSIONS: Our study indicates that psychopathic traits modulate the impact of acute stress on reward learning.


Subject(s)
Antisocial Personality Disorder , Reward , Humans , Learning , Male , Punishment , Self Report
12.
J Mol Med (Berl) ; 100(2): 151-165, 2022 02.
Article in English | MEDLINE | ID: mdl-34735579

ABSTRACT

Psychological stress predisposes our body to several disorders. Understanding the cellular and molecular mechanisms involved in the physiological responses to psychological stress is essential for the success of therapeutic applications. New studies show, by using in vivo inducible Cre/loxP-mediated approaches in combination with pharmacological blockage, that sympathetic nerves, activated by psychological stress, induce brown adipocytes to produce IL-6. Strikingly, this cytokine promotes gluconeogenesis in hepatocytes, that results in the decline of tolerance to inflammatory organ damage. The comprehension arising from this research will be crucial for the handling of many inflammatory diseases. Here, we review recent advances in our comprehension of the sympathetic nerve-adipocyte axis in the tissue microenvironment.


Subject(s)
Adipocytes/metabolism , Stress, Psychological/metabolism , Sympathetic Nervous System/metabolism , Animals , Humans , Interleukin-6/metabolism , Tumor Microenvironment
14.
BMC Bioinformatics ; 22(1): 596, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915867

ABSTRACT

BACKGROUND: Bacterial genomes are being deposited into online databases at an increasing rate. Genome annotation represents one of the first efforts to understand organisms and their diseases. Some evolutionary relationships capable of being annotated only from genomes are conserved gene neighbourhoods (CNs), phylogenetic profiles (PPs), and gene fusions. At present, there is no standalone software that enables networks of interactions among proteins to be created using these three evolutionary characteristics with efficient and effective results. RESULTS: We developed GENPPI software for the ab initio prediction of interaction networks using predicted proteins from a genome. In our case study, we employed 50 genomes of the genus Corynebacterium. Based on the PP relationship, GENPPI differentiated genomes between the ovis and equi biovars of the species Corynebacterium pseudotuberculosis and created groups among the other species analysed. If we inspected only the CN relationship, we could not entirely separate biovars, only species. Our software GENPPI was determined to be efficient because, for example, it creates interaction networks from the central genomes of 50 species/lineages with an average size of 2200 genes in less than 40 min on a conventional computer. Moreover, the interaction networks that our software creates reflect correct evolutionary relationships between species, which we confirmed with average nucleotide identity analyses. Additionally, this software enables the user to define how he or she intends to explore the PP and CN characteristics through various parameters, enabling the creation of customized interaction networks. For instance, users can set parameters regarding the genus, metagenome, or pangenome. In addition to the parameterization of GENPPI, it is also the user's choice regarding which set of genomes they are going to study. CONCLUSIONS: GENPPI can help fill the gap concerning the considerable number of novel genomes assembled monthly and our ability to process interaction networks considering the noncore genes for all completed genome versions. With GENPPI, a user dictates how many and how evolutionarily correlated the genomes answer a scientific query.


Subject(s)
Protein Interaction Maps , Software , Animals , Phylogeny , Protein Interaction Maps/genetics , Sheep
15.
Microbiol Resour Announc ; 10(48): e0073121, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34854719

ABSTRACT

Pseudomonas sp. strain LAP_36 was isolated from rhizosphere soil from Deschampsia antarctica on King George Island, South Shetland Islands, Antarctica. Here, we report on its draft genome sequence, which consists of 8,794,771 bp with 60.0% GC content and 8,011 protein-coding genes.

16.
Neurobiol Stress ; 15: 100412, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34761081

ABSTRACT

Acute stress is pervasive in everyday modern life and is thought to affect how people make choices and learn from them. Reinforcement learning, which implicates learning from the unexpected rewarding and punishing outcomes of our choices (i.e., prediction errors), is critical for adjusted behaviour and seems to be affected by acute stress. However, the neural mechanisms by which acute stress disrupts this type of learning are still poorly understood. Here, we investigate whether and how acute stress blunts neural signalling of prediction errors during reinforcement learning using model-based functional magnetic resonance imaging. Male participants completed a well-established reinforcement-learning task involving monetary gains and losses whilst under stress and control conditions. Acute stress impaired participants' (n = 23) behavioural performance towards obtaining monetary gains (p < 0.001), but not towards avoiding losses (p = 0.57). Importantly, acute stress blunted signalling of prediction errors during gain and loss trials in the dorsal striatum (p = 0.040) - with subsidiary analyses suggesting that acute stress preferentially blunted signalling of positive prediction errors. Our results thus reveal a neurocomputational mechanism by which acute stress may impair reward learning.

17.
Acta Neuropathol Commun ; 9(1): 183, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34784974

ABSTRACT

Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.


Subject(s)
Melanoma/genetics , Melanoma/pathology , Sensory Receptor Cells/pathology , Animals , Behavior, Animal/drug effects , Biopsy , Cell Line, Tumor , Computer Simulation , Disease Progression , Humans , Immunologic Surveillance , Lymphocytes/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Mice, Transgenic , NAV1.8 Voltage-Gated Sodium Channel/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Sensory Receptor Cells/metabolism , Suppressor Factors, Immunologic , Tumor Microenvironment
18.
Microb Pathog ; 161(Pt A): 105263, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34687839

ABSTRACT

Corynebacterium ulcerans is an emerging pathogen able to transmit the acute infection diphtheria to humans. Although there is a well-established vaccine based on the toxin produced by Corynebacterium diphtheriae, another species of this genus known to cause the disease, there is still no vaccine formulations described for C. ulcerans; this fact contributes to the increase in cases of infection that has been observed. In this study, we want to provide information at the genomic level of this bacterium in order to suggest proteins as possible vaccine targets. We carried out an in silico prospection of vaccine candidates through reverse vaccinology for targets that exhibit antigenic potential against diphtheria. We found important virulence factors, such as adhesion-related ones, that are responsible for pathogen-host interaction after infection, but we did not find the diphtheria toxin, which is the main component of the currently available vaccine. This study provides detailed information about the exoproteome and hypothetical proteins from the core genome of C. ulcerans, suggesting vaccine targets to be further tested in vitro for the development of a new vaccine against diphtheria.


Subject(s)
Corynebacterium Infections , Diphtheria , Vaccines , Corynebacterium/genetics , Corynebacterium Infections/prevention & control , Diphtheria/prevention & control , Diphtheria Toxin/genetics , Humans , Virulence
19.
Front Cardiovasc Med ; 8: 715842, 2021.
Article in English | MEDLINE | ID: mdl-34568457

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder related to neuroinflammation that is associated with increased risk of thrombosis. We aimed to evaluate γ' fibrinogen plasma level (an in vivo variant of fibrinogen) as a biomarker in ALS, and to test its role as a predictor of disease progression and survival. Sixty-seven consecutive patients with ALS were followed and the results were compared with those from 82 healthy blood donors. Patients were clinically evaluated at the time of blood sampling and on follow-up (every 3 months for the beginning of the follow-up until death) by applying the revised ALS Functional Rating Scale. Human plasma γ' fibrinogen concentration was quantified using a specific two-site sandwich kit enzyme-linked immunosorbent assay. We found, for the first time, a positive association between γ' fibrinogen concentration and survival in ALS patients: patients with higher γ' fibrinogen plasma levels survived longer, and this finding was not influenced by confounders such as age, gender, respiratory impairment, or functionality (ALSFRS-R score). Since increased levels have a positive impact on outcome, this novel biomarker should be further investigated in ALS.

20.
An Acad Bras Cienc ; 93(suppl 3): e20210431, 2021.
Article in English | MEDLINE | ID: mdl-34378637

ABSTRACT

A second deadlier wave of COVID-19 and the causes of the recent public health collapse of Manaus are compared with the Spanish flu events in that city, and Brazil. Historic sanitarian problems, and its hub position in the Brazilian airway network are combined drivers of deadly events related to COVID-19. These drivers were amplified by misleading governance, highly transmissible variants, and relaxation of social distancing. Several of these same factors may also have contributed to the dramatically severe outbreak of H1N1 in 1918, which caused the death of 10% of the population in seven months. We modelled Manaus parameters for the present pandemic and confirmed that lack of a proper social distancing might select the most transmissible variants. We succeeded to reproduce a first severe wave followed by a second stronger wave. The model also predicted that outbreaks may last for up to five and half years, slowing down gradually before the disease disappear. We validated the model by adjusting it to the Spanish Flu data for the city, and confirmed the pattern experienced by that time, of a first stronger wave in October-November 1918, followed by a second less intense wave in February-March 1919.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Pandemic, 1918-1919 , Brazil , History, 20th Century , Humans , Rainforest , SARS-CoV-2 , Syndemic
SELECTION OF CITATIONS
SEARCH DETAIL
...