Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Nutr ESPEN ; 59: 96-106, 2024 02.
Article in English | MEDLINE | ID: mdl-38220413

ABSTRACT

BACKGROUND & AIMS: Turmeric (a source of curcumin) is an excellent food to modulate oxidative stress, inflammation, and gut dysbiosis in patients with chronic kidney disease (CKD). However, no studies report the benefits of curcumin in patients undergoing peritoneal dialysis (PD). This study aims to evaluate the effects of curcuminoid supplementation on oxidative stress, inflammatory markers, and uremic toxins originating from gut microbiota in patients with CKD undergoing PD. METHODS: This longitudinal, randomized, single-blind, placebo-controlled trial evaluated 48 patients who were randomized into two groups: Curcumin (three capsules of 500 mg of Curcuma longa extract, with 98.42 % total curcuminoids) or placebo (three capsules of 500 mg of starch) for twelve weeks. In the peripheral blood mononuclear cells (PBMCs), the transcriptional expression levels of Nrf2, HOX-1 and NF-κB were evaluated by quantitative real-time PCR. Oxidative stress was evaluated by malondialdehyde (MDA) and total Thiol (T-SH). TNF-α and IL-6 plasma levels were measured by ELISA. P-cresyl sulphate plasma level, a uremic toxin, was evaluated by high-performance liquid chromatography (HPLC) with fluorescent detection. RESULTS: Twenty-four patients finished the study: 10 in the curcumin group (57.5 ± 11.6 years) and 14 in the placebo group (56.5 ± 10.0 years). The plasma levels of MDA were reduced after 12 weeks in the curcumin group (p = 0.01), while the placebo group remained unchanged. However, regarding the difference between the groups at the endpoint, no change was observed in MDA. Still, there was a trend to reduce the p-CS plasma levels in the curcumin group compared to the placebo group (p = 0.07). Likewise, the concentrations of protein thiols, mRNA expression of Nrf2, HOX-1, NF-κB, and cytokines plasma levels did not show significant changes. CONCLUSION: Curcuminoid supplementation for twelve weeks attenuates lipid peroxidation and might reduce uremic toxin in patients with CKD undergoing PD. This study was registered on Clinicaltrials.gov as NCT04413266.


Subject(s)
Curcumin , Peritoneal Dialysis , Renal Insufficiency, Chronic , Uremia , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , NF-kappa B/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Leukocytes, Mononuclear/metabolism , Single-Blind Method , Inflammation , Oxidative Stress , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Diarylheptanoids/pharmacology , Diarylheptanoids/therapeutic use , Dietary Supplements , Uremia/drug therapy
2.
Obes Surg ; 33(10): 3193-3197, 2023 10.
Article in English | MEDLINE | ID: mdl-37589830

ABSTRACT

INTRODUCTION: Few studies have evaluated the impact of bariatric surgery (BS) on thyroid function and morphology, and how it correlates to inflammatory and metabolic markers. We aimed to evaluate all those parameters together. METHODS: A longitudinal study included 70 patients with severe obesity. The bariatric group (BG) enrolled 40 patients who underwent BS, and the control group (CG) enrolled 30 patients who did not undergo BS. Both were submitted (pre- and 2nd-year) to thyroid ultrasound and laboratory analyses to determine the levels of thyroid hormones, inflammatory, and metabolic markers. RESULTS: Thyroid volume (TV) decreased after BS (-1.5 cm3), differing significantly from the CG (+0.6 cm3; p = 0.003). ΔTV was independently and positively correlated with ΔHOMA-IR (0.41 (0.11/7.16) p = 0.007) and ΔIL6 (0.02 (0.01/0.3) p = 0.016). A nonsignificant correlation between ΔTV and ΔBMI was detected (0.38 (-0.01/0.09) p = 0.152). We also observed a negative correlation between ΔTV and ΔTSH (-2.03 (-2.87/-1.19) p = 0.000) and ΔT3/T4 ratio (-0.06 (-0.09/-0.02) p = 0.001). TSH had a nonsignificant reduction with BS (-0.3872 vs. -0.2483 p = 0.128). The conversion of T4 to T3 had a significant increase after BS, as demonstrated by the T3/T4 ratio (+5.16 p = 0.01). Despite an increase in the prevalence of thyroid nodules in the BG, it was not statistically significant (p = 0.340). CONCLUSION: BS was associated with a reduction in TV and a nonstatistically significant reduction in TSH. The variations in TV were related to the metabolic markers and inflammatory changes. An increase in the conversion of T4 to T3 with BS was detected, possibly related to inflammatory improvement.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Humans , Thyroid Gland/diagnostic imaging , Thyroid Gland/surgery , Longitudinal Studies , Obesity, Morbid/surgery , Thyrotropin
3.
Endocrinology ; 154(3): 1361-72, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23407453

ABSTRACT

Diabetes mellitus (DM) disrupts the pituitary-thyroid axis and leads to a higher prevalence of thyroid disease. However, the role of reactive oxygen species in DM thyroid disease pathogenesis is unknown. Dual oxidases (DUOX) is responsible for H(2)O(2) production, which is a cosubstrate for thyroperoxidase, but the accumulation of H(2)O(2) also causes cellular deleterious effects. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is another member of the nicotinamide adenine dinucleotide phosphate oxidase family expressed in the thyroid. Therefore, we aimed to evaluate the thyroid DUOX activity and expression in DM rats in addition to NOX4 expression. In the thyroids of the DM rats, we found increased H(2)O(2) generation due to higher DUOX protein content and DUOX1, DUOX2, and NOX4 mRNA expressions. In rat thyroid PCCL3 cells, both TSH and insulin decreased DUOX activity and DUOX1 mRNA levels, an effect partially reversed by protein kinase A inhibition. Most antioxidant enzymes remained unchanged or decreased in the thyroid of DM rats, whereas only glutathione peroxidase 3 was increased. DUOX1 and NOX4 expression and H(2)O(2) production were significantly higher in cells cultivated with high glucose, which was reversed by protein kinase C inhibition. We conclude that thyroid reactive oxygen species is elevated in experimental rat DM, which is a consequence of low-serum TSH and insulin but is also related to hyperglycemia per se.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Reactive Oxygen Species/metabolism , Thyroid Gland/metabolism , Animals , Base Sequence , Blood Glucose/metabolism , Cell Line , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Dual Oxidases , Flavoproteins/genetics , Flavoproteins/metabolism , Gene Expression , Hydrogen Peroxide/metabolism , Insulin/blood , Insulin/metabolism , Insulin/pharmacology , Iodide Peroxidase/metabolism , Male , NADPH Oxidase 4 , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Thyroid Diseases/etiology , Thyroid Diseases/genetics , Thyroid Diseases/metabolism , Thyroid Gland/drug effects , Thyrotropin/blood , Thyrotropin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...