Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28966144

ABSTRACT

Matrinxã (Brycon amazonicus) is a great swimming performance teleost fish from the Amazon basin. However, the possible cardiac adaptations of this ability are still unknown. Therefore, the aim of the present work was to investigate the effects of prolonged exercise (EX group - 60days under 0.4BL·s-1) on ventricular contractility by (i) in-vitro analysis of contractility comparing the relative roles of sodium/calcium exchanger (NCX) and sarcoplasmic reticulum (SR) in the excitation-contraction (E-C) coupling and (ii) molecular analysis of NCX, sarcoplasmic reticulum Ca2+ ATPase (SERCA2) and phospholamban (PLB) expression and quantification. The exercise training significantly improved twitch tension, cardiac pumping capacity and the contraction rate when compared to controls (CT). Inhibition of the NCX function, replacing Na+ by Li+ in the physiological solutions, diminished cardiac contractility in the EX group, reduced all analyzed parameters under both high and low stimulation frequencies. The SR blockage, using 10µM ryanodine, caused ~50% tension reduction in CT at most analyzed frequencies while in EX, reductions (34-54%) were only found at higher frequencies. SR inhibition also decreased contraction and relaxation rates in both groups. Additionally, higher post-rest contraction values were recorded for EX, indicating an increase in SR Ca2+ loading. Higher NCX and PLB expression rates and lower SERCA2 rates were found in EX. Our data indicate that matrinxã presents a modulation in E-C coupling after exercise-training, enhancing the SR function under higher frequencies. This was the first study to functionally analyze the effects of swimming-induced exercise on fish cardiac E-C coupling.


Subject(s)
Calcium Signaling , Characiformes/physiology , Excitation Contraction Coupling , Gene Expression Regulation, Developmental , Heart/physiology , Myocardium/metabolism , Physical Conditioning, Animal , Animals , Aquaculture , Brazil , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Characiformes/growth & development , Excitation Contraction Coupling/drug effects , Exercise Tolerance , Fish Proteins/antagonists & inhibitors , Fish Proteins/genetics , Fish Proteins/metabolism , Heart/drug effects , Heart/growth & development , Myocardium/enzymology , Organ Size , Random Allocation , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/enzymology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitors , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Swimming , Water Movements
2.
Braz. j. microbiol ; Braz. j. microbiol;44(4): 1049-1057, Oct.-Dec. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-705270

ABSTRACT

Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.


Subject(s)
Clavulanic Acid/metabolism , Metabolic Engineering , Mutagenesis , Mutation , Streptomyces/metabolism , Culture Media/chemistry , Lipase/metabolism , Methyl Methanesulfonate , Streptomyces/drug effects , Streptomyces/genetics , Streptomyces/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL