Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 59(6): 3721-3737, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35378696

ABSTRACT

Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD), mostly due to the high number of patients diagnosed with AD who develop epileptic seizures later on. However, this link is not well understood. Previous studies from our group have identified memory impairment and metabolic abnormalities in the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy. Our goal was to investigate AD behavioral and molecular alterations, including brain insulin resistance, in naïve (seizure-free) animals of the WAR strain. We used the Morris water maze (MWM) test to evaluate spatial learning and memory performance and hippocampal tissue to verify possible molecular and immunohistochemical alterations. WARs presented worse performance in the MWM test (p < 0.0001), higher levels of hyperphosphorylated tau (S396) (p < 0.0001) and phosphorylated glycogen synthase kinase 3 (S21/9) (p < 0.05), and lower insulin receptor levels (p < 0.05). Conversely, WARs and Wistar controls present progressive increase in amyloid fibrils (p < 0.0001) and low levels of soluble amyloid-ß. Interestingly, the detected alterations were age-dependent, reaching larger differences in aged than in young adult animals. In summary, the present study provides evidence of a partial AD-like phenotype, including altered regulation of insulin signaling, in a genetic model of epilepsy. Together, these data contribute to the understanding of the connection between epilepsy and AD as comorbidities. Moreover, since both tau hyperphosphorylation and altered insulin signaling have already been reported in epilepsy and AD, these two events should be considered as important components in the interconnection between epilepsy and AD pathogenesis and, therefore, potential therapeutic targets in this field.


Subject(s)
Alzheimer Disease , Epilepsy , Insulin Resistance , Aged , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Animals , Epilepsy/genetics , Humans , Insulin/metabolism , Insulin Resistance/genetics , Maze Learning/physiology , Models, Genetic , Phenotype , Rats , Rats, Wistar , tau Proteins/metabolism
2.
Biosci Rep ; 41(3)2021 03 26.
Article in English | MEDLINE | ID: mdl-33629708

ABSTRACT

Tau is a microtubule-associated protein (MAP) responsible for controlling the stabilization of microtubules in neurons. Tau function is regulated by phosphorylation. However, in some neurological diseases Tau becomes aberrantly hyperphosphorylated, which contributes to the pathogenesis of neurological diseases, known as tauopathies. Western blotting (WB) has been widely employed to determine Tau levels in neurological disease models. However, Tau quantification by WB should be interpreted with care, as this approach has been recognized as prone to produce artifactual results if not properly performed. In the present study, our goal was to evaluate the influence of a freeze-and-thaw cycle, a common procedure preceding WB, to the integrity of Tau in brain homogenates from rats, 3xTg-AD mice and human samples. Homogenates were prepared in ice-cold RIPA buffer supplemented with protease/phosphatase inhibitors. Immediately after centrifugation, an aliquot of the extracts was analyzed via WB to quantify total and phosphorylated Tau levels. The remaining aliquots of the same extracts were stored for at least 2 weeks at either -20 or -80°C and then subjected to WB. Extracts from rodent brains submitted to freeze-and-thaw presented a ∼25 kDa fragment immunoreactive to anti-Tau antibodies. An in-gel digestion followed by mass spectrometry (MS) analysis in excised bands revealed this ∼25 kDa species corresponds to a Tau fragment. Freeze-and-thaw-induced Tau proteolysis was detected even when extracts were stored at -80°C. This phenomenon was not observed in human samples at any storage condition tested. Based on these findings, we strongly recommend the use of fresh extracts of brain samples in molecular analysis of Tau levels in rodents.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Cryopreservation/methods , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Brain/pathology , Humans , Immunohistochemistry/methods , Proteolysis , Rats , Rats, Wistar , tau Proteins/toxicity
3.
Biomed J ; 44(6): 709-716, 2021 12.
Article in English | MEDLINE | ID: mdl-35166209

ABSTRACT

BACKGROUND: The repair of burns in diabetic patients is a clinical problem. It is relevant to study alternative therapies that can improve the healing process. Our aim was to investigate the effects of Solidago chilensis associated or not with laser on burns in diabetic rats. METHODS: The animals were divided in four groups (n = 30): C- without treatment; S- S. chilensis extract; L-laser irradiated; LS- laser and S. chilensis. In 7, 14 and 21 days samples were collected after the injury to structural, morphometric and molecular analysis. RESULTS: Our results demonstrate the association of S. chilensis and laser reduced the inflammatory infiltrate and favored the angiogenesis. In the groups treated only with laser or with the plant extract showed higher levels of VEGF. The low-level laser therapy (LLLT) promoted higher collagen I and reduction of collagen III. It was also observed higher MMP-2 activation and a decreasing of the active isoform of MMP-9 in the S, L and LS groups. CONCLUSIONS: The treatments improved the repair of burns in diabetic rats, since it reduced the inflammatory infiltrate and favored the collagen organization presenting similar effects in the burn repair of the diabetics.


Subject(s)
Burns , Diabetes Mellitus, Experimental , Solidago , Animals , Burns/therapy , Humans , Lasers , Rats , Rats, Wistar , Solidago/chemistry , Wound Healing
4.
Tissue Cell ; 48(3): 224-34, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27138327

ABSTRACT

The effects of microcurrent application on the elastic cartilage defects in the outer ear of young animals were analyzed. Sixty male Wistar rats were divided into a control (CG) and a treated group (TG). An excisional lesion was created in the right outer ear of each animal. Daily treatment was started after 24h and consisted of the application of a low-intensity (20µA) continuous electrical current to the site of injury for 5min. The animals were euthanized after 7, 14 and 28 days of injury and the samples were submitted to analyses. In CG, areas of newly formed cartilage and intense basophilia were seen at 28 days, while in TG the same observations were made already at 14 days. The percentage of birefringent collagen fibers was higher in CG at 28 days. The number of connective tissue cells and granulocytes was significantly higher in TG. Ultrastructural analysis revealed the presence of chondrocytes in TG at 14 days, while these cells were observed in CG only at 28 days. Cuprolinic blue staining and the amount of glycosaminoglycans were significantly higher in TG at 14 days and 28 days. The amount of hydroxyproline was significantly higher in TG at all time points studied. The active isoform of MMP-2 was higher activity in TG at 14 days. Immunoblotting for type II collagen and decorin was positive in both groups and at all time points. The treatment stimulated the proliferation and differentiation of connective tissue cells, the deposition of glycosaminoglycans and collagen, and the structural reorganization of these elements during elastic cartilage repair.


Subject(s)
Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Ear, External/radiation effects , Elastic Cartilage/radiation effects , Animals , Cartilage, Articular/growth & development , Cartilage, Articular/radiation effects , Chondrocytes/radiation effects , Collagen/metabolism , Ear, External/growth & development , Ear, External/injuries , Elastic Cartilage/growth & development , Electromagnetic Radiation , Male , Rats , Wound Healing/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...