Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955831

ABSTRACT

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Subject(s)
Anti-Bacterial Agents , Biofilms , Croton , Microbial Sensitivity Tests , Oils, Volatile , Plant Leaves , Biofilms/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Croton/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Leaves/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gas Chromatography-Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Membrane/drug effects
2.
Curr Microbiol ; 81(7): 176, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755426

ABSTRACT

Antimicrobial resistance (AMR) presents a global challenge as microorganisms evolve to withstand the effects of antibiotics. In addition, the improper use of antibiotics significantly contributes to the AMR acceleration. Essential oils have garnered attention for their antimicrobial potential. Indeed, essential oils extracted from plants contain compounds that exhibit antibacterial activity, including against resistant microorganisms. Hence, this study aimed to evaluate the antimicrobial and antibiofilm activity of the essential oil (EO) extracted from Lippia grata and its combination with ampicillin against Staphylococcus aureus strains (ATCC 25923, ATCC 700698, and JKD6008). The plant material (leaves) was gathered in Mossoro, RN, and the EO was obtained using the hydrodistillation method with the Clevenger apparatus. The antimicrobial activity of the EO was assessed through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiofilm activity was evaluated by measuring biomass using crystal violet (CV) staining, viable cell counting, and analysis of preformed biofilms. In addition, the synergistic effects of the EO in combination with ampicillin were examined by scanning electron and confocal microscopy. The EO displayed a MIC value of 2.5 mg/mL against all tested S. aureus strains and an MBC only against S. aureus JKD6008 at 2.5 mg/mL. L. grata EO caused complete biofilm inhibition at concentrations ranging from 10 to 0.312 mg/mL against S. aureus ATCC 25923 and 10 to 1.25 mg/mL against S. aureus ATCC 700698 and S. aureus JKD6008. In the viable cell quantification assay, there was a reduction in CFU ranging from 1.0 to 8.0 logs. The combination of EO with ampicillin exhibited a synergistic effect against all strains. Moreover, the combination showed a significantly inhibiting biofilm formation and eradicating preformed biofilms. Furthermore, the EO and ampicillin (individually and in combination) altered the cellular morphology of S. aureus cells. Regarding the mechanism, the results revealed that L. grata EO increased membrane permeability and caused significant membrane damage. Concerning the synergy mechanism, the results revealed that the combination of EO and ampicillin increases membrane permeability and causes considerable membrane damage, further inhibiting bacteria synergistically. The findings obtained here suggest that L. grata EO in combination with ampicillin could be a viable treatment option against S. aureus infections, including MRSA strain.


Subject(s)
Ampicillin , Anti-Bacterial Agents , Biofilms , Drug Synergism , Lippia , Microbial Sensitivity Tests , Oils, Volatile , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Oils, Volatile/pharmacology , Lippia/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry
3.
Curr Microbiol ; 80(10): 325, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37606794

ABSTRACT

The emergence of infections caused by microorganisms in the oral cavity and increasing concerns regarding the use of antibiotics have resulted in the development of novel antimicrobial molecules, such as antimicrobial synthetic peptides. The purpose of this study was to evaluate the antimicrobial and antibiofilm activities of the native peptide KR-12 and its derivative, the synthetic peptide [W7]KR12-KAEK, against planktonic and biofilms Enterococcus faecalis strains. The methods used to evaluate the antimicrobial activity in planktonic cultures include minimum inhibitory concentration and minimum bactericidal concentration assays. The effects of [W7]KR12-KAEK on biofilm formation and mature biofilms were evaluated by quantifying biomass (crystal violet staining) and counting colony-forming units. Structural assessments of the biofilms and cellular morphological changes were performed using scanning electron microscopy. Peptide [W7]KR12-KAEK showed potential antimicrobial activity against planktonic cells. Interestingly, the native peptide KR-12 showed no antimicrobial activity. Moreover, it inhibited biofilm formation and disrupted the mature biofilms of E. faecalis strains. These results suggest that [W7]KR12-KAEK may be a potential molecule for the development of auxiliary antimicrobial therapies against oral infections.


Subject(s)
Anti-Infective Agents , Enterococcus faecalis , Anti-Infective Agents/pharmacology , Peptides , Biofilms , Plankton
4.
Biochimie ; 214(Pt B): 165-175, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37437685

ABSTRACT

Lectins presents the ability to interact with glycans and trigger varied responses, including the inhibition of the development of various pathogens. Structural studies of these proteins are essential to better understand their functions. In marine sponges, so far only a few lectins have their primary structures completely determined. Thus, the objective of this work was to structurally characterize and evaluate antibacterial potential, in association with different antibiotics, of the lectin isolated from the marine sponge Aplysina lactuta (ALL). ALL is a homotetramer of 60 kDa formed by four 15 kDa-subunits. The lectin showed affinity only for the glycoproteins fetuin, asialofetuin, mucin type III, and bovine submaxillary mucin type I. The complete amino acid sequences of two isoforms of ALL, named ALL-a and ALL-b, were determined by a combination of Edman degradation and overlapped peptides sequenced by tandem mass spectrometry. ALL-a and ALL-b have 144 amino acids with molecular masses of 15,736 Da and 15,985 Da, respectively. Both structures contain conserved residues typical of the galectin family. ALL is a protein with antibacterial potential, when in association with ampicillin and oxacillin the lectin potentiates its antibiotic effect, included Methicillin-resistant Staphylococcus strains. Thus, ALL shows to be a molecule with potential for the development of new antibacterial drugs.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Porifera , Animals , Cattle , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Galectins , Oxacillin
5.
Biochimie ; 214(Pt B): 61-76, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37301421

ABSTRACT

The SfL-1 isoform from the marine red algae Solieria filiformis was produced in recombinant form (rSfL-1) and showed hemagglutinating activity and inhibition similar to native SfL. The analysis of circular dichroism revealed the predominance of ß-strands structures with spectra of ßI-proteins for both lectins, which had Melting Temperature (Tm) between 41 °C and 53 °C. The three-dimensional structure of the rSfL-1 was determined by X-ray crystallography, revealing that it is composed of two ß-barrel domains formed by five antiparallel ß chains linked by a short peptide between the ß-barrels. SfL and rSfL-1 were able to agglutinate strains of Escherichia coli and Staphylococcus aureus and did not show antibacterial activity. However, SfL induced a reduction in E. coli biomass at concentrations from 250 to 125 µg mL-1, whereas rSfL-1 induced reduction in all concentrations tested. Additionally, rSfL-1 at concentrations from 250 to 62.5 µg mL-1, showed a statistically significant reduction in the number of colony-forming units, which was not noticed for SfL. Wound healing assay showed that the treatments with SfL and rSfL-1 act in reducing the inflammatory response and in the activation and proliferation of fibroblasts by a larger and fast deposition of collagen.


Subject(s)
Lectins , Rhodophyta , Lectins/pharmacology , Lectins/chemistry , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rhodophyta/chemistry , Wound Healing
6.
Curr Microbiol ; 80(5): 176, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37029832

ABSTRACT

Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3ß,6ß,16ß-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.


Subject(s)
Combretum , Methicillin-Resistant Staphylococcus aureus , Triterpenes , Staphylococcus aureus , Combretum/chemistry , Staphylococcus , Triterpenes/pharmacology , Molecular Docking Simulation , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ampicillin/pharmacology , Biofilms , Staphylococcus epidermidis , Microbial Sensitivity Tests
7.
Nat Prod Res ; 37(2): 333-337, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34338557

ABSTRACT

This study investigated the chemical composition and evaluated the antibacterial and antibiofilm activities of essential oils (EOs) extracted from Ruellia asperula (EORA) and Ruellia paniculata (EORP) against oral streptococci. The EO constituents were analyzed by gas chromatography/mass spectrometry. The antimicrobial potential of EOs was evaluated using the minimum inhibitory concentration, minimum bactericidal concentration, and time-kill determination. Furthermore, the quantification of total biomass and the number of viable cells in the biofilms were evaluated. The major constituents of EORA were cariophylla-4(12)-8-(13)-dien-5ß-ol (14.1%), (ß)-caryophyllene (22.7%), and caryophyllene oxide (29.4%). For EORP, the major constituents were (ß)-caryophyllene (11.0%), spathulenol (13.1%), and δ-amorphene (14.9%). The tested EOs exhibited antibacterial activity against planktonic growth and biofilm formation. Thus, the EOs from R. asperula and R. paniculata prove to be promising alternatives for bacterial growth control and biofilm formation prevention of oral streptococci.


Subject(s)
Acanthaceae , Anti-Infective Agents , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
8.
Fish Shellfish Immunol ; 131: 150-159, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36216229

ABSTRACT

Fibrinogen-related proteins (FREPs) have been identified in several animals. They are involved in the body's defense, acting as mediators of phagocytosis. Ficolins and intelectins are some of the most studied Fibrinogen-related Domain (FReD)-containing lectins. In this work, we have isolated a singular FReD-containing lectin, which cannot be classified as ficolin or intelectin. ELL (Echinometra lucunter lectin) was isolated from coelomic plasma by affinity chromatography on xanthan gum. Primary structure was determined by tandem mass spectrometry. Moreover, antimicrobial activity of ELL was evaluated against planktonic cells and biofilm of Escherichia coli, Staphylococcus aureus and S. epidermidis. ELL showed hemagglutinating activity in Ca2+ presence, which was inhibited by glycoprotein mucin and thyroglobulin. Complete amino acid sequence consisted of 229 residues, including a FReD in the N-terminal. Searches for similarity found that ELL was very close to putative proteins from Strongylocentrotus purpuratus. ELL showed moderate similarity with uncharacterized sea stars proteins and protochordate intelectins. ELL was able to inhibit the planktonic growth of the Gram-positive bacteria and significantly reduce the biofilm formation of all bacteria tested. In conclusion, we identified a new type of FReP-containing lectin with some structural and functional conservation towards intelectins.


Subject(s)
Echinodermata , Fibrinogen , Animals , Echinodermata/metabolism , Fibrinogen/genetics , Sequence Alignment , Lectins/genetics , Lectins/pharmacology , Lectins/metabolism , Staphylococcus aureus/metabolism , Escherichia coli
9.
Arch Oral Biol ; 133: 105299, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34735926

ABSTRACT

OBJECTIVE: The aim was to evaluate the antibacterial and antibiofilm activity of natural (n-CNSL) and technical (t-CNSL) cashew nut shell liquid against streptococci and enterococci related to dental caries and chronic apical periodontitis, respectively. MATERIAL AND METHODS: Minimum inhibitory concentrations (MIC) and minimal bactericidal concentration (MBC) were determined to assess the antimicrobial effect of both CNSLs (n-CSNL and t-CNSL) against S. oralis ATCC 10557, S. sobrinus ATCC 6715, S. parasanguinis ATCC 903, S. mutans UA 159 and E. faecalis ATCC 19433. The antibiofilm activity was evaluated by total biomass quantification, colony forming unit (CFU) counting and scanning electron microscopy (SEM). Furthermore, cytotoxic effect of the substances was evaluated on L929 and HaCat cell lines by MTS assay. RESULTS: The n-CNSL and t-CNSL showed inhibitory and bactericidal effect against all strains tested in this study, with MIC and MBC values ranging from 1.5 to 25 µg/mL. Overall, both CNSLs showed significant reduction in biomass quantification and enumeration of biofilm-entrapped cells for the strains analyzed, in biofilm formation and preformed biofilms (p < 0.05). In biofilm inhibition assay, the t-CNSL and n-CNSL showed reduction in biomass and CFU number for all bacteria, except in cell viability of S. parasanguinis treated with t-CNSL (p > 0.05). Indeed, SEM images showed a reduction in the amount of biomass, bacterial cells and changes in cellular morphology of S. mutans. CONCLUSION: In conclusion, both substances showed effective antibacterial and antibiofilm activity against the strains used in the study, except in viability of S. parasanguinis cells treated with t-CNSL.


Subject(s)
Anacardium , Anti-Infective Agents , Dental Caries , Anti-Bacterial Agents/pharmacology , Biofilms , Microbial Sensitivity Tests , Nuts , Streptococcus mutans
10.
Nat Prod Res ; 36(18): 4740-4745, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34812686

ABSTRACT

This study aims to evaluate the wound healing potential of lectin isolated from the seeds of Centrolobium microchaete (Mart. ex Benth) (CML) on cutaneous wounds in mice. CML did not show cytotoxicity on murine dermal fibroblasts (L929 cell line). The wounds treated with CML (200 µg/mL) showed a decrease in area within 12 days post-operative (P.O.) when compared to control. On 3rd and 7th day P.O., the CML-treated group exhibited fibroblast proliferation and neovascularization. On 12th day P.O., complete restructuring of the epithelial layer and connective tissue was observed in the CML-treated group, whereas control groups exhibited incomplete reepithelialization. CML treatment enhanced the wound closure via the wound contraction process, resulting in the restructuring of the skin layers on 12th day P.O. In conclusion, CML induced a fast and efficient wound healing, suggesting that it can be used as a promising therapeutic tool to heal acute wounds.


Subject(s)
Fabaceae , Lectins , Animals , Lectins/pharmacology , Mice , Seeds , Skin , Wound Healing
11.
Int J Pharm ; 610: 121220, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34687814

ABSTRACT

Nitric oxide (NO) has emerged as a promising antibacterial agent, where NO donor compounds have been explored. Here, we investigated the role of a silica nanoparticle containing nitroprusside (MPSi-NP) as a NO donor agent against methicillin-sensitive (ATCC 25,923 and ATCC 12228) and methicillin-resistant (ATCC 700,698 and ATCC 35984) Staphylococcus strains. Biofilm inhibition was studied along with antibiotic activity in combination with standard antibiotics (ampicillin and tetracycline). MPSi-NP exhibited thermal release of 63% of NO within 24 h, while free nitroprusside released only 18% during a dialysis assay, indicating an assisted release of NO mediated by the nanoparticles. This nanomaterial showed only a moderate activity in blocking biofilm production, but exhibited a significant decrease in the number of viable bacterial cells (over 600-fold for Staphylococcus aureus ATCC 700,698 and Staphylococcus epidermidis ATCC 35984). Remarkably, even using MPSi-NP at concentrations below any antibacterial action, its combination with ampicillin promoted a significant decrease in MIC for resistant strains of S. aureus ATCC 700,698 (2-fold) and S. epidermidis ATCC 35,984 (4-fold). A carbopol-based gel formulation with MPSi-NP (0.5% w/w) was prepared and showed a zone of inhibition of 7.7 ± 0.6 mm for S. epidermidis ATCC 35984. Topical use of MPSi-NP in combination with antibiotics might be a manageable strategy to prevent and eventually treat complicated resistant bacterial infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Biofilms , Humans , Microbial Sensitivity Tests , Nitric Oxide Donors/pharmacology , Renal Dialysis , Staphylococcus aureus
12.
Arch Microbiol ; 203(7): 4727-4736, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34052872

ABSTRACT

Infectious diseases caused by multidrug-resistant microorganisms has increased in the last years. Piper species have been reported as a natural source of phytochemicals that can help in combating fungal and bacterial infections. This study had as objectives characterize the chemical composition of the essential oil from Piper caldense (EOPC), evaluate its potential antimicrobial activity, and investigate the synergistic effect with Norfloxacin against multidrug-resistant S. aureus overproducing efflux pumps, as well as, verify the EOPC ability to inhibit the Candida albicans filamentation. EOPC was extracted by hydrodistillation, and the chemical constituents were identified by gas chromatography, allowing the identification of 24 compounds (91.9%) classified as hydrocarbon sesquiterpenes (49.6%) and oxygenated sesquiterpenes (39.5%). Antimicrobial tests were performed using a 96-well plate microdilution method against C. albicans ATCC 10231, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 standard strains, as well as against multidrug-resistant strains S. aureus SA1199B (overexpressing norA gene), S. aureus K2068 (overexpressing mepA gene) and S. aureus K4100 (overexpressing qacC gene). The oil showed activity against C. albicans ATCC 10231 (≥ 512 µg/mL) and was able to inhibit hyphae formation, an important mechanism of virulence of C. albicans. On the other hand, EOPC was inactive against all bacterial strains tested (≤ 1,024 µg mL). However, when combined with Norfloxacin at subinhibitory concentration EOPC reduced the Norfloxacin and Ethidium bromide MIC values against S. aureus strains SA1199B, K2068 and K4100. These results indicate that EOPC is a source of phytochemicals acting as NorA, MepA and QacC inhibitors.


Subject(s)
Bacterial Proteins , Methicillin-Resistant Staphylococcus aureus , Norfloxacin , Oils, Volatile , Piper , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins , Norfloxacin/chemistry , Norfloxacin/pharmacology , Oils, Volatile/pharmacology , Piper/chemistry , Piper/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics
13.
Curr Microbiol ; 78(5): 1926-1938, 2021 May.
Article in English | MEDLINE | ID: mdl-33782740

ABSTRACT

A large number of infections are caused by Gram-positive and Gram-negative multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. The indiscriminate uses of antibiotics, as well as their misuse, resulted in the selection of bacteria resistant to known antibiotics, for which it has little or no treatment. In this way, the strategies to combat the resistance of microorganisms are extremely important and, essential oils of Croton species have been extensively studied for this purpose. The aim of this study was to carry the evaluation of antibacterial, antibiofilm, antioxidant activities, and spectroscopic investigation of essential oil from Croton piauhiensis (EOCp). The EOCp exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria with required MICs ranging from 0.15 to 5% (v/v). In addition, the MBC of the EOCp for Staphylococcus aureus ATCC 25923 and ATCC 700698, were 0.15 and 1.25%, respectively. Moreover, the EOCp significantly reduced significantly the biofilm production and the number of viable cells from the biofilm of all bacterial strains tested. The antioxidant potential of the EOCp showed EC50 values ranging from 171.21 to 4623.83 µg/mL. The EOCp caused hemolysis (>45%) at the higher concentrations tested (1.25 to 5%), and minor hemolysis (17.6%) at a concentration of 0.07%. In addition, docking studies indicated D-limonene as a phytochemical with potential for antimicrobial activity. This study indicated that the EOCp may be a potential agent against infections caused by bacterial biofilms, and act as a protective agent against ROS and oxidative stress.


Subject(s)
Anti-Infective Agents , Croton , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biofilms , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Oils, Volatile/pharmacology
14.
Int J Biol Macromol ; 158: 773-780, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32360963

ABSTRACT

The aim of the study was to assess the antihyperglycemic, antilipidemic, and antioxidant effects of a lectin isolated from Bryothamnion seaforthii (BSL), on rats with streptozotocin (STZ)-induced diabetes. The disease model was induced by low-dose injections of STZ. Diabetic rats were treated with NaCl 150 mM, metformin, and BSL at different concentrations. Blood collection was carried out at 0, 30, 60, 90, and 120 days after hyperglycemia confirmation via the assessment of seric glucose, total cholesterol, and triglycerides, assessment of the enzymatic levels of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), and the determination of insulin resistance by a homeostasis model of assessment-insulin resistance (HOMA-IR) as well as a homeostasis model of assessment of ß-cells resistance (HOMA-ß). The BSL-treated animals at all three concentrations showed a significant reduction in levels of glucose, cholesterol, total cholesterol, and triglycerides. Moreover, BSL increased the enzymatic activity of GPx and SOD. Index assessments of HOMA-IR and HOMA-ß confirmed that BSL treatment significantly decreased insulin resistance and ß-cell hypersecretion, respectively. In conclusion, BSL treatment might exert hypoglycemic and hypolipidemic effects, diminish insulin resistance, and ameliorate pancreatic ß-cell function along with enzymatic activities toward oxidative stress caused by diabetes mellitus type 2 (T2DM).

15.
Biofouling ; 36(4): 442-454, 2020 04.
Article in English | MEDLINE | ID: mdl-32447980

ABSTRACT

The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, cis-[RuCl2 (dppb) (bqdi)]2+ (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.5 µg ml-1 and minimum bactericidal concentration (MBC) values ranging from 62.5 to 125 µg ml-1. A synergistic effect against Staphylococcus spp. was observed when RuNN was combined with ampicillin, and the range of associated fractional inhibitory concentration index (FICI) values was 0.187 to 0.312. A time-kill curve indicated the bactericidal activity of RuNN in the first 1-5 h. In general, RuNN inhibited biofilm formation and disrupted mature biofilms. Furthermore, RuNN altered the cellular morphology of S. aureus biofilms. Further, RuNN did not cause hemolysis of erythrocytes. The results of this study provide evidence that RuNN is a novel therapeutic candidate to treat bacterial infections caused by Staphylococcus biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ruthenium , Staphylococcus aureus , Microbial Sensitivity Tests
16.
Ciênc. rural (Online) ; 50(6): e20190533, 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1098186

ABSTRACT

ABSTRACT: The objective of this study was to evaluate the physiological and biochemical mechanisms of adaptation of Hyptis suaveolens under osmotic stress due to salinity inoculations with a mycorrhizal fungal species. H. suaveolens seeds were germinated in polyethylene pots containing a substrate associated with or without arbuscular mycorrhizal fungi (AMF). After plant formation, treatments were treated with different salt concentrations (0.0, 35, 70, and 105 mM) and fungi (control and two types of AMF), totaling 12 treatments with three replicates. The experimental design used randomized blocks in a 4 x 3 factorial scheme, totaling 12 treatments with three replicates each. Salinity affected all measured physiological and biochemical variables, and the stress reduced dry matter content. Plants associated with AMF had increased dry matter compared to non-associated plants, and there were increased biochemical and physiological responses of AMF-colonized plants in the 35 mM NaCl treatment. However, saline stress negatively affected the development of H. suaveolens; and therefore, no attenuation of fungi was observed.


RESUMO: Este estudo teve como objetivo avaliar mecanismos fisiológicos e bioquímicos de adaptação de Hyptis suaveolens submetidas ao estresse osmótico decorrente da salinidade inoculadas com espécies de fungos micorrízicos. Sementes de H. suaveolens foram colocadas para germinar em vasos de polietileno contendo substrato associado, ou não, a FMA. Após o estabelecimento das plantas, foram iniciados os tratamentos com diferentes concentrações de sais (0,0; 35; 70 e 105 mM) e fungos (controle e dois tipos de FMA), perfazendo 12 tratamentos com três repetições. O delineamento experimental foi em blocos casualizados em esquema fatorial 4 x 3, perfazendo 12 tratamentos com três repetições cada. Observou-se, através de variáveis fisiológicas e bioquímicas, que a salinidade afetou todas as variáveis analisadas e o estresse promoveu redução no conteúdo de matéria seca. Verificou-se que plantas associadas com FMA apresentaram ganho de matéria seca em relação as não associadas e incremento de respostas bioquímicas e fisiológicas das plantas colonizadas no tratamento 35mM de NaCl. No entanto, o estresse salino afeta negativamente o desenvolvimento de H. suaveolens não sendo observado, portanto, atenuação dos fungos.

17.
Microb Pathog ; 135: 103608, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31229603

ABSTRACT

This study aimed to determinate the chemical composition and evaluate the antimicrobial and antioxidant activity of the essential oil obtained from leaves of V. gardneriana. The Vitex gardneriana leaves's were hydrodistilled to obtain the essential oil and the chemical composition determined by GC/MS analysis. The antimicrobial activities were determined by microdilution method. The activity of essential oil on biofilm was evaluated by quantification of total biomass and enumeration of biofilm-entrapped viable cells. The antioxidant activity was assessed by DPPH free radical assay, ferrous ion chelating assay, ferric-reducing antioxidant power and ß-carotene bleaching assay. Furthermore, the essential oil was tested on viability of health human, animal cells and the microcrustacean Artemia sp. The essential oil showed high content of sesquiterpenes and very low content of monoterpenes. Regarding activity on planktonic cells, the essential oil reduced the growth of the all species tested but showed MIC values only to S. aureus (0.31%). In general, the essential oil reduced significantly the biofilm biomass and the number of viable cells of bacteria and yeasts, mainly on biofilm formation. The essential oil showed a potential antioxidant activity, mainly on ß-carotene oxidation. Moreover, the essential oil reduced the cell viability of murine fibroblasts but not show viability reduction of human keratinocytes. Furthermore, the oil not show toxicity against the microcrustacean. Thus, the essential oil from V. gardneriana leaves may be considered as an important alternative against biofilms formed by bacteria and yeasts related to infections, as well as a natural antioxidant and non-toxic substance on human cells.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Vitex/chemistry , Animals , Anti-Infective Agents/pharmacology , Artemia/drug effects , Bacteria/drug effects , Biofilms/drug effects , Biofilms/growth & development , Brazil , Candida/drug effects , Cell Line , Cell Survival/drug effects , Gas Chromatography-Mass Spectrometry , Humans , Mice , Microbial Sensitivity Tests , Monoterpenes/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , beta Carotene
18.
Arch Biochem Biophys ; 662: 169-176, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30552872

ABSTRACT

A new mucin-binding lectin (AFL) was isolated from the marine sponge Aplysina fulva. AFL was purified by affinity chromatography on Sepharose™ matrix. Its hemagglutinating activity was independent of divalent ions, and it was weakly inhibited by simple sugars. However, porcine stomach mucin was a powerful inhibitor. In SDS PAGE, piridylethylated AFL showed one band of approximately 16 kDa, whereas in the non-reducing conditions, AFL showed at least two bands of 30 and 70 kDa. Mass spectrometry MALDI-ToF analysis showed one major ion of 31,652 ±â€¯5 Da, which corresponded to a dimer formed by subunits linked by disulfide bonds. The first fifteen amino acids of AFL were determined, and no sequence similarity was observed with any known protein. Internal sequences were obtained by mass spectrometry analysis of tryptic digestion of AFL spots. These peptides showed similarity with a lectin from marine sponge Aplysina lactuca. Secondary structure of AFL was predominantly formed by ß-conformations, which were stable at variations of pH and temperature. AFL did not inhibit planktonic growth of Gram-positive and Gram-negative bacteria tested. However, the lectin did significantly reduce the biomass biofilm of the bacteria Staphylococcus aureus, S. epidermidis, and Escherichia coli.


Subject(s)
Biofilms , Lectins/metabolism , Mucins/metabolism , Porifera/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Protein Binding , Seawater
19.
Int J Biol Macromol ; 109: 1292-1301, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29175164

ABSTRACT

A new lectin from the marine sponge Chondrilla caribensis (CCL) was isolated by affinity chromatography in Sepharose 6B media. CCL is a homotetrameric protein formed by subunits of 15,445 ±2Da. The lectin showed affinity for disaccharides containing galactose and mucin. Mass spectrometric analysis revealed about 50% of amino acid sequence of CCL, which showed similarity with a lectin isolated from Aplysina lactuca. Secondary structure consisted of 10% α-helix, 74% ß-sheet/ß-turn and 16% coil, and this profile was unaltered in a broad range of pH and temperatures. CCL agglutinated Staphylococcus aureus, S epidermidis and Escherichia coli, and it was able to reduce biofilm biomass, but showed no inhibition of planktonic growth of these bacteria. CCL activity was inhibited by α-lactose, indicating that Carbohydrate Recognition Domain (CRD) of the lectin was involved in antibiofilm activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Aquatic Organisms/chemistry , Lectins/chemistry , Lectins/pharmacology , Porifera/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Bacteria/drug effects , Bacteria/growth & development , Biofilms/drug effects , Chromatography, Affinity , Circular Dichroism , Hemolysis , Lactose/pharmacology , Lectins/isolation & purification , Molecular Weight , Protein Stability , Spectrometry, Mass, Electrospray Ionization , Spectrum Analysis
20.
Int J Biol Macromol ; 99: 213-222, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28192138

ABSTRACT

A new lectin was isolated from the marine sponge Aplysina lactuca (ALL) by combining ammonium sulfate precipitation and affinity chromatography on guar gum matrix. ALL showed affinity for the disaccharides α-lactose, ß-lactose and lactulose (Ka=12.5, 31.9 and 145.5M-1, respectively), as well as the glycoprotein porcine stomach mucin. Its hemagglutinating activity was stable in neutral acid pH values and temperatures below 60°C. ALL is a dimeric protein formed by two covalently linked polypeptide chains. The average molecular mass, as determined by Electrospray Ionization Mass Spectrometry (ESI-MS), was 31,810±2Da. ESI-MS data also indicated the presence of three cysteines involved in one intrachain and one interchain disulfide bond. The partial amino acid sequence of ALL was determined by tandem mass spectrometry. Eight tryptic peptides presented similarity with lectin I isolated from Axinella polypoides. Its secondary structure is predominantly ß-sheet, as indicated by circular dichroism (CD) spectroscopy. ALL agglutinated gram-positive and gram-negative bacterial cells, and it were able to significantly reduce the biomass of the bacterial biofilm tested at dose- dependent effect.


Subject(s)
Biofilms/drug effects , Lectins/isolation & purification , Lectins/pharmacology , Porifera/chemistry , Ammonium Sulfate/chemistry , Animals , Carbohydrates/analysis , Chemical Precipitation , Escherichia coli/drug effects , Escherichia coli/physiology , Hemagglutination/drug effects , Hydrogen-Ion Concentration , Lectins/chemistry , Molecular Weight , Rabbits , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...