Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 40(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38984735

ABSTRACT

MOTIVATION: Tumor trees, which depict the evolutionary process of cancer, provide a backbone for discovering recurring evolutionary processes in cancer. While they are not the primary information extracted from genomic data, they are valuable for this purpose. One such extraction method involves summarizing multiple trees into a single representative tree, such as consensus trees or supertrees. RESULTS: We define the "weighted centroid tree problem" to find the centroid tree of a set of single-labeled rooted trees through the following steps: (i) mapping the given trees into the Euclidean space, (ii) computing the weighted centroid matrix of the mapped trees, and (iii) finding the nearest mapped tree (NMTP) to the centroid matrix. We show that this setup encompasses previously studied parent-child and ancestor-descendent metrics as well as the GraPhyC and TuELiP consensus tree algorithms. Moreover, we show that, while the NMTP problem is polynomial-time solvable for the adjacency embedding, it is NP-hard for ancestry and distance mappings. We introduce integer linear programs for NMTP in different setups where we also provide a new algorithm for the case of ancestry embedding called 2-AncL2, that uses a novel weighting scheme for ancestry signals. Our experimental results show that 2-AncL2 has a superior performance compared to available consensus tree algorithms. We also illustrate our setup's application on providing representative trees for a large real breast cancer dataset, deducing that the cluster centroid trees summarize reliable evolutionary information about the original dataset. AVAILABILITY AND IMPLEMENTATION: https://github.com/vasei/WAncILP.


Subject(s)
Algorithms , Mutation , Neoplasms , Phylogeny , Humans , Neoplasms/genetics , Computational Biology/methods
2.
Sci Rep ; 12(1): 5011, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322102

ABSTRACT

Fragile X syndrome (FXS) is caused by a mutation in the FMR1 gene which can lead to a loss or shortage of the FMR1 protein. This protein interacts with specific miRNAs and can cause a range of neurological disorders. Therefore, miRNAs could act as a novel class of biomarkers for common CNS diseases. This study aimed to test this theory by exploring the expression profiles of various miRNAs in Iranian using deep sequencing-based technologies and validating the miRNAs affecting the expression of the FMR1 gene. Blood samples were taken from 15 patients with FXS (9 males, 6 females) and 12 controls. 25 miRNAs were differentially expressed in individuals with FXS compared to controls. Levels of 9 miRNAs were found to be significantly changed (3 upregulated and 6 downregulated). In Patients, the levels of hsa-miR-532-5p, hsa-miR-652-3p and hsa-miR-4797-3p were significantly upregulated while levels of hsa-miR-191-5p, hsa-miR-181-5p, hsa-miR-26a-5p, hsa-miR-30e-5p, hsa-miR-186-5p, and hsa-miR-4797-5p exhibited significant downregulation; and these dysregulations were confirmed by RT-qPCR. This study presents among the first evidence of altered miRNA expression in blood samples from patients with FXS, which could be used for diagnostic, prognostic, and treatment purposes. Larger studies are required to confirm these preliminary results.


Subject(s)
Fragile X Syndrome , MicroRNAs , Biomarkers , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , High-Throughput Nucleotide Sequencing , Humans , Iran , Male , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...