Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 17: 1272391, 2023.
Article in English | MEDLINE | ID: mdl-38077948

ABSTRACT

Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to WT and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. An increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two was unchanged. However, at 100% readthrough, AQP4x localization and the formation of higher order complexes were disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for an increased proportion of endothelial cells with budding vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.

2.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546949

ABSTRACT

Aquaporin-4 (AQP4) is a water channel protein that links astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, that preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel mouse AQP4 line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wildtype (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to wildtype, and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. Increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two were unchanged. However, at 100% readthrough, AQP4x localization and formation of higher-order complexes was disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for increased endothelial cell vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.

3.
Nat Neurosci ; 26(7): 1185-1195, 2023 07.
Article in English | MEDLINE | ID: mdl-37277487

ABSTRACT

Neurons, astrocytes and oligodendrocytes locally regulate protein translation within distal processes. Here, we tested whether there is regulated local translation within peripheral microglial processes (PeMPs) from mouse brain. We show that PeMPs contain ribosomes that engage in de novo protein synthesis, and these are associated with transcripts involved in pathogen defense, motility and phagocytosis. Using a live slice preparation, we further show that acute translation blockade impairs the formation of PeMP phagocytic cups, the localization of lysosomal proteins within them, and phagocytosis of apoptotic cells and pathogen-like particles. Finally, PeMPs severed from their somata exhibit and require de novo local protein synthesis to effectively surround pathogen-like particles. Collectively, these data argue for regulated local translation in PeMPs and indicate a need for new translation to support dynamic microglial functions.


Subject(s)
Microglia , Phagocytosis , Mice , Animals , Microglia/metabolism , Phagocytosis/physiology , Neurons/metabolism , Astrocytes/metabolism
4.
Nat Commun ; 12(1): 1537, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750804

ABSTRACT

Quaking RNA binding protein (QKI) is essential for oligodendrocyte development as myelination requires myelin basic protein mRNA regulation and localization by the cytoplasmic isoforms (e.g., QKI-6). QKI-6 is also highly expressed in astrocytes, which were recently demonstrated to have regulated mRNA localization. Here, we define the targets of QKI in the mouse brain via CLIPseq and we show that QKI-6 binds 3'UTRs of a subset of astrocytic mRNAs. Binding is also enriched near stop codons, mediated partially by QKI-binding motifs (QBMs), yet spreads to adjacent sequences. Using a viral approach for mosaic, astrocyte-specific gene mutation with simultaneous translating RNA sequencing (CRISPR-TRAPseq), we profile ribosome associated mRNA from QKI-null astrocytes in the mouse brain. This demonstrates a role for QKI in stabilizing CLIP-defined direct targets in astrocytes in vivo and further shows that QKI mutation disrupts the transcriptional changes for a discrete subset of genes associated with astrocyte maturation.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Cytoplasm/metabolism , Gene Expression , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Protein Isoforms , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcriptome
5.
Sci Adv ; 6(27)2020 07.
Article in English | MEDLINE | ID: mdl-32937429

ABSTRACT

Increased appreciation of 5-hydroxymethylcytosine (5hmC) as a stable epigenetic mark, which defines cell identity and disease progress, has engendered a need for cost-effective, but high-resolution, 5hmC mapping technology. Current enrichment-based technologies provide cheap but low-resolution and relative enrichment of 5hmC levels, while single-base resolution methods can be prohibitively expensive to scale up to large experiments. To address this problem, we developed a deep learning-based method, "DeepH&M," which integrates enrichment and restriction enzyme sequencing methods to simultaneously estimate absolute hydroxymethylation and methylation levels at single-CpG resolution. Using 7-week-old mouse cerebellum data for training the DeepH&M model, we demonstrated that the 5hmC and 5mC levels predicted by DeepH&M were in high concordance with whole-genome bisulfite-based approaches. The DeepH&M model can be applied to 7-week-old frontal cortex and 79-week-old cerebellum, revealing the robust generalizability of this method to other tissues from various biological time points.


Subject(s)
DNA Methylation , Epigenomics , Animals , Cerebellum , Epigenesis, Genetic , Genome , Mice
6.
Cell ; 182(4): 992-1008.e21, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32710817

ABSTRACT

Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.


Subject(s)
DNA Transposable Elements/genetics , Single-Cell Analysis/methods , Transcription Factors/metabolism , Animals , Binding Sites , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cerebral Cortex/metabolism , Chromatin Immunoprecipitation , Gene Expression , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Mice , Protein Binding , Sequence Analysis, RNA , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Transcription Factors/genetics
7.
Proc Natl Acad Sci U S A ; 117(18): 10003-10014, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32300008

ABSTRACT

Transcription factors (TFs) enact precise regulation of gene expression through site-specific, genome-wide binding. Common methods for TF-occupancy profiling, such as chromatin immunoprecipitation, are limited by requirement of TF-specific antibodies and provide only end-point snapshots of TF binding. Alternatively, TF-tagging techniques, in which a TF is fused to a DNA-modifying enzyme that marks TF-binding events across the genome as they occur, do not require TF-specific antibodies and offer the potential for unique applications, such as recording of TF occupancy over time and cell type specificity through conditional expression of the TF-enzyme fusion. Here, we create a viral toolkit for one such method, calling cards, and demonstrate that these reagents can be delivered to the live mouse brain and used to report TF occupancy. Further, we establish a Cre-dependent calling cards system and, in proof-of-principle experiments, show utility in defining cell type-specific TF profiles and recording and integrating TF-binding events across time. This versatile approach will enable unique studies of TF-mediated gene regulation in live animal models.


Subject(s)
Chromatin/genetics , DNA Transposable Elements/genetics , DNA-Binding Proteins/genetics , Epigenomics/methods , Transcription Factors/genetics , Algorithms , Animals , Antibodies/genetics , Binding Sites/genetics , Chromatin/virology , Dependovirus/genetics , Gene Expression Regulation/genetics , Genome/genetics , Humans , Integrases/genetics , Mice , Tissue Distribution/genetics
8.
Nat Immunol ; 19(2): 151-161, 2018 02.
Article in English | MEDLINE | ID: mdl-29292385

ABSTRACT

Memory impairment following West Nile virus neuroinvasive disease (WNND) is associated with loss of hippocampal synapses with lack of recovery. Adult neurogenesis and synaptogenesis are fundamental features of hippocampal repair, which suggests that viruses affect these processes. Here, in an established model of WNND-induced cognitive dysfunction, transcriptional profiling revealed alterations in the expression of genes encoding molecules that limit adult neurogenesis, including interleukin 1 (IL-1). Mice that had recovered from WNND exhibited fewer neuroblasts and increased astrogenesis without recovery of hippocampal neurogenesis at 30 d. Analysis of cytokine production in microglia and astrocytes isolated ex vivo revealed that the latter were the predominant source of IL-1. Mice deficient in the IL-1 receptor IL-1R1 and that had recovered from WNND exhibited normal neurogenesis, recovery of presynaptic termini and resistance to spatial learning defects, the last of which likewise occurred after treatment with an IL-1R1 antagonist. Thus, 'preferential' generation of proinflammatory astrocytes impaired the homeostasis of neuronal progenitor cells via expression of IL-1; this might underlie the long-term cognitive consequences of WNND but also provides a therapeutic target.


Subject(s)
Astrocytes/metabolism , Interleukin-1/biosynthesis , Neurogenesis/physiology , West Nile Fever/complications , Adult Stem Cells/metabolism , Animals , Astrocytes/immunology , Cell Differentiation/physiology , Cognitive Dysfunction/etiology , Memory Disorders/etiology , Mice , Neural Stem Cells/metabolism
9.
Proc Natl Acad Sci U S A ; 114(19): E3830-E3838, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28439016

ABSTRACT

Local translation in neuronal processes is key to the alteration of synaptic strength necessary for long-term potentiation, learning, and memory. Here, we present evidence that regulated de novo protein synthesis occurs within distal, perisynaptic astrocyte processes. Astrocyte ribosomal proteins are found adjacent to synapses in vivo, and immunofluorescent detection of peptide elongation in acute slices demonstrates robust translation in distal processes. We have also developed a biochemical approach to define candidate transcripts that are locally translated in astrocyte processes. Computational analyses indicate that astrocyte-localized translation is both sequence-dependent and enriched for particular biological functions, such as fatty acid synthesis, and for pathways consistent with known roles for astrocyte processes, such as GABA and glutamate metabolism. These transcripts also include glial regulators of synaptic refinement, such as Sparc Finally, the transcripts contain a disproportionate amount of a binding motif for the quaking RNA binding protein, a sequence we show can significantly regulate mRNA localization and translation in the astrocytes. Overall, our observations raise the possibility that local production of astrocyte proteins may support microscale alterations of adjacent synapses.


Subject(s)
Astrocytes/metabolism , Cell Nucleus/metabolism , Memory/physiology , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Synapses/metabolism , Animals , Astrocytes/cytology , Humans , Neurons/classification , Neurons/metabolism
10.
Nature ; 534(7608): 538-43, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27337340

ABSTRACT

Over 50% of patients who survive neuroinvasive infection with West Nile virus (WNV) exhibit chronic cognitive sequelae. Although thousands of cases of WNV-mediated memory dysfunction accrue annually, the mechanisms responsible for these impairments are unknown. The classical complement cascade, a key component of innate immune pathogen defence, mediates synaptic pruning by microglia during early postnatal development. Here we show that viral infection of adult hippocampal neurons induces complement-mediated elimination of presynaptic terminals in a murine WNV neuroinvasive disease model. Inoculation of WNV-NS5-E218A, a WNV with a mutant NS5(E218A) protein leads to survival rates and cognitive dysfunction that mirror human WNV neuroinvasive disease. WNV-NS5-E218A-recovered mice (recovery defined as survival after acute infection) display impaired spatial learning and persistence of phagocytic microglia without loss of hippocampal neurons or volume. Hippocampi from WNV-NS5-E218A-recovered mice with poor spatial learning show increased expression of genes that drive synaptic remodelling by microglia via complement. C1QA was upregulated and localized to microglia, infected neurons and presynaptic terminals during WNV neuroinvasive disease. Murine and human WNV neuroinvasive disease post-mortem samples exhibit loss of hippocampal CA3 presynaptic terminals, and murine studies revealed microglial engulfment of presynaptic terminals during acute infection and after recovery. Mice with fewer microglia (Il34(-/-) mice with a deficiency in IL-34 production) or deficiency in complement C3 or C3a receptor were protected from WNV-induced synaptic terminal loss. Our study provides a new murine model of WNV-induced spatial memory impairment, and identifies a potential mechanism underlying neurocognitive impairment in patients recovering from WNV neuroinvasive disease.


Subject(s)
Complement System Proteins/immunology , Memory Disorders/pathology , Memory Disorders/virology , Microglia/immunology , Neuronal Plasticity , Presynaptic Terminals/pathology , West Nile virus/pathogenicity , Animals , CA3 Region, Hippocampal/immunology , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/virology , Complement Activation , Complement Pathway, Classical/immunology , Disease Models, Animal , Female , Humans , Male , Memory Disorders/immunology , Memory Disorders/physiopathology , Mice , Neurons/immunology , Neurons/pathology , Neurons/virology , Presynaptic Terminals/immunology , Spatial Memory , West Nile Fever/pathology , West Nile Fever/physiopathology , West Nile Fever/virology , West Nile virus/immunology
11.
PLoS One ; 9(5): e96442, 2014.
Article in English | MEDLINE | ID: mdl-24802239

ABSTRACT

Lymphocytic choriomeningitis virus (LCMV) can be transmitted through congenital infection, leading to persistent infection of numerous organ systems including the central nervous system (CNS). Adult mice persistently infected with LCMV (LCMV-cgPi mice) exhibit learning deficits, such as poor performance in spatial discrimination tests. Given that deficits in spatial learning have been linked to defects in adult neurogenesis, we investigated the impact of congenital LCMV infection on generation of neuroblasts from neural progenitor cells within neurogenic zones of adult mice. In LCMV-cgPi mice, QPCR and immunohistochemistry detected presence of LCMV glycoprotein-coding RNA and nucleoprotein in the hippocampal dentate gyrus and subventricular zone (SVZ), sites of neurogenesis that harbor populations of neuroblasts. Numbers of neuroblasts were reduced in LCMV-cgPi mice, as determined by IHC quantification, and analysis of BrdU incorporation by flow cytometry revealed lower numbers of BrdU-labeled neuroblasts. Additionally, TUNEL assays performed in situ showed increased numbers of apoptotic cells in the two neurogenic regions. Next, neurosphere cultures were infected in vitro with LCMV and differentiated to create a population of cells that consisted of both transit amplifying cells and neuroblasts. Immunocytochemical and TUNEL assays revealed increased numbers of TUNEL-positive cells that express nestin, suggesting that the drop in numbers of neuroblasts was due to a combination of impaired proliferation and apoptosis of progenitor cells. LCMV-cgPi mice exhibited transcriptional up-regulation several cytokines and chemokines, including gamma-interferon inducible chemokines CXCL9 and CXCL10. Chronic up-regulation of these chemokines can facilitate a pro-inflammatory niche that may contribute to defects in neurogenesis.


Subject(s)
Dentate Gyrus/virology , Lateral Ventricles/virology , Lymphocytic Choriomeningitis/physiopathology , Lymphocytic Choriomeningitis/virology , Neurons/virology , Stem Cells/virology , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Dentate Gyrus/metabolism , Interferon-gamma/metabolism , Lateral Ventricles/metabolism , Lymphocytic Choriomeningitis/metabolism , Lymphocytic choriomeningitis virus , Mice , Neurogenesis/physiology , Neurons/metabolism , Stem Cells/metabolism , Stem Cells/pathology , Transcription, Genetic/physiology , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...