Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 862: 160694, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36481154

ABSTRACT

This work pursues the hydro-geochemical and isotopic characterization of the complex groundwater system of the Gioia Tauro Plain, one of the most important industrialized and agricultural coastal areas of southern Italy. The anthropic pressure exposes the water resources at risk of depletion and quality degradation making the plain groundwater a system of high scientific and social interest. The plain is characterized by a shallow aquifer, mostly recharged by local rains and a deep aquifer apparently less influenced by local precipitation. Both aquifers are mainly Ca-HCO3 waters except for localized sectors where Na-HCO3, Na-Cl and Ca-SO4 waters are present. In deep aquifer, both prolonged interaction with sedimentary rocks, mainly deriving from the erosion of crystalline rocks, and direct cation exchange represent the primary factors controlling the formation of Na-HCO3 waters. Mixing processes between these waters and either connate brine and/or deep thermal waters contribute to the formation of isolated high salinity Na-Cl-rich waters. In shallow aquifer, inputs of N-rich sewage and agriculture-related contaminants, and SOx emissions in proximity of the harbor are responsible of the increasing nitrate and sulphate concentrations, respectively. The Cl/Br and NO3/Cl ratios highlight contamination mainly linked to agricultural activities and contribution of wastewater. Along the northern boundary, the warmest groundwater (Na-Cl[SO4]) were found close to a bend of the main strike-slip fault system, locally favouring the rising of B- and Li-rich deep waters, testifying the influence of geological-structural features on deep water circulation. Despite the high-water demand, a direct marine intrusion is localized in a very restricted area, where we observed an incipient groundwater-seawater mixing (seawater contribution ≤7 %). The qualitative and quantitative conditions of the shallow aquifer still have acceptable levels because of the relatively high recharge inflow. A reliable hydrogeochemical conceptual model, able to explain the compositional variability of the studied waters, is proposed.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Water , Italy
2.
Chemosphere ; 288(Pt 2): 132547, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34653490

ABSTRACT

We present the first real attempt to directly and continuously measure GEM through a Lumex RA-915 M, designed for real-time detection of mercury vapor, mounted on an UAV (Unmanned Aerial Vehicle, namely a heavy-lift octocopter), inside and outside the former Hg-mining area of Abbadia San Salvatore (Mt. Amiata, Italy), known as a GEM source. We tested the effectiveness of the UAV-Lumex combination at different heights in selected sites pertaining to both mining facilities and surrounding urban zones, shedding light on the GEM spatial distribution and concentration variability. The Lumex great sensitivity and the octocopter optimal versatility and maneuverability, both horizontally and vertically, allowed to depict the GEM distribution in the atmosphere up to 60 m above the ground. The acquisition system was further optimized by: i) synchronizing Lumex and UAV GPS data by means of a stand-alone GPS that was previously synchronized with Lumex; ii) using a vertical sampling tube (1.20 m high) connected to the Lumex inlet to overcome the rotors strong airflows and turbulence that would have affected GEM measurements; iii) supplying the octocopter with batteries for power supply to avoid the release of exhaust gases; iv) taking the advantage of the UAV ability to land in small spaces and stop at selected altitudes. The resulting dot-map graphical representations, providing a realistic 3D picture of GEM vertical profiling during the flights in near real-time, were useful to verify whether the guideline concentrations indicated by competent authorities were exceeded. The results showed that the GEM concentrations in the urban area, located a few hundred meters from the mining structures, and close to already reclaimed areas remained at relatively low values. Contrarily, GEM contents showed significant variations and the highest concentrations above the facilities containing the old furnaces, where increasing GEM concentrations were recorded at decreasing heights or downwind.


Subject(s)
Mercury , Atmosphere , Italy , Unmanned Aerial Devices
3.
Sci Total Environ ; 698: 134245, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31494422

ABSTRACT

In this study, the results of a continuous monitoring of (i) CO2 fluxes, and (ii) CO2 and CH4 concentrations and carbon isotopic ratios (δ13C-CO2 and δ13C-CH4) in air, carried out from 7 to 21 July 2017 and from October 10 to December 15, 2017 in the city centre of Florence, are presented. The measurements were performed from the roof of the historical building of the Ximenes Observatory. CO2 flux data revealed that the metropolitan area acted as a net source of CO2 during the whole observation period. According to the Keeling plot analysis, anthropogenic contributions to atmospheric CO2 were mainly represented by vehicular traffic (about 30%) and natural gas combustion (about 70%), the latter contributing 7 times more in December than in July. Moreover, the measured CO2 fluxes were about 80% higher in fall than in summer, confirming that domestic heating based on natural gas is the dominant CO2 emitting source in the municipality of Florence. Even though the continuous monitoring revealed a shift in the δ13C-CO2 values related to photosynthetic uptake of atmospheric CO2, the isotopic effect induced by plant activity was restricted to few hours in October and, to a lesser extent, in November. This suggests that urban planning policies should be devoted to massively increase green infrastructures in the metropolitan area in order to counterbalance anthropogenic emissions. During fall, the atmospheric CH4 concentrations were sensibly higher with respect to those recorded in summer, whilst the δ13C-CH4 values shifted towards heavier values. The Keeling plot analysis suggested that urban CH4 emissions were largely related to fugitive emissions from the natural gas distribution pipeline network. On the other hand, δ13C-CH4 monitoring allowed to recognize vehicular traffic as a minor CH4 emitting source.

4.
Environ Pollut ; 253: 525-537, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330345

ABSTRACT

659 water samples from springs and wells in the Sabatini and Vicano-Cimino Volcanic Districts (central Italy) were analyzed for arsenic (As), fluoride (F-) and radon (222Rn) concentrations. Waters mostly sourced from a shallow and cold aquifer hosted within volcanic rocks, which represents the main public drinking water supply. Cold waters from perched aquifers within sedimentary formations and thermal waters related to a deep hydrothermal reservoir were also analyzed. The highest concentrations of As and F- were measured in the thermal waters and attributed to their enhanced mobility during water-rock interaction processes at hydrothermal temperatures. Relatively high concentrations of As and F- were also recorded in those springs and wells discharging from the volcanic aquifer, whereas waters hosted in the sedimentary units showed significantly lower contents. About 60% (As) and 25% (F-) of cold waters from the volcanic aquifer exceeded the maximum allowable concentrations for human consumption. Such anomalously high levels of geogenic pollutants were caused by mixing with fluids upwelling through faulted zones from the hydrothermal reservoir. Chemical weathering of volcanic rocks and groundwater flow path were also considered to contribute to the observed concentrations. Cold waters from the volcanic aquifer showed the highest 222Rn concentrations, resulting from the high contents of Rn-generating radionuclides in the volcanic units. Approximately 22% of these waters exceeded the recommended value for human consumption. A specific Quality Index (QI), comprised between 1 (very low) and 4 (very high), was computed for each water on the basis of As, F- and 222Rn concentrations and visualized through a spatial distribution map processed by means of geostatistical techniques. This map and the specific As, F- and 222Rn maps can be regarded as useful tools for water management by local authorities to both improve intervention plans in contaminated sectors and identify new water resources suitable for human consumption.


Subject(s)
Arsenic/analysis , Conservation of Water Resources , Fluorides/analysis , Groundwater/chemistry , Radon/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Radioactive/analysis , Italy , Water Quality , Water Resources , Water Supply , Water Wells
5.
Sci Total Environ ; 655: 887-898, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30481715

ABSTRACT

Volcanic and hydrothermal areas largely contribute to the natural emission of greenhouse gases to the atmosphere, although large uncertainties in estimating their global output still remain. Nevertheless, CO2 and CH4 discharged from hydrothermal fluid reservoirs may support active soil microbial communities. Such secondary processes can control and reduce the flux of these gases to the atmosphere. In order to evaluate the effects deriving from the presence of microbial activity, chemical and carbon (in CO2 and CH4) isotopic composition of interstitial soil gases, as well as diffuse CO2 fluxes, of three hydrothermal systems from Italy were investigated, i.e. (i) Solfatara crater (Campi Flegrei), (ii) Monterotondo Marittimo (Larderello geothermal field) and (iii) Baia di Levante in Vulcano Island (Aeolian Archipelago), where soil CO2 fluxes up to 2400, 1920 and 346 g m-2 day-1 were measured, respectively. Despite the large supply of hydrothermal fluids, 13CO2 enrichments were observed in interstitial soil gases with respect to the fumarolic gas discharges, pointing to the occurrence of autotrophic CO2 fixation processes during the migration of deep-sourced fluids towards the soil-air interface. On the other hand, (i) the δ13C-CH4 values (up to ~48‰ vs. V-PDB higher than those measured at the fumarolic emissions) of the interstitial soil gases and (ii) the comparison of the CO2/CH4 ratios between soil gases and fumarolic emissions suggested that the deep-sourced CH4 was partly consumed by methanotrophic activity, as supported by isotope fractionation modeling. These findings confirmed the key role that methanotrophs play in mitigating the release of geogenic greenhouse gases from volcanic and hydrothermal environments.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Environmental Restoration and Remediation , Greenhouse Gases/analysis , Hot Springs/chemistry , Soil/chemistry , Carbon Dioxide/analysis , Carbon Isotopes/analysis , Italy , Methane/analysis
6.
Environ Pollut ; 180: 111-21, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23747819

ABSTRACT

This study presents the chemical composition of VOCs in air and gas discharges collected at Nisyros Island (Dodecanese Archipelago, Greece). The main goals are i) to discriminate between natural and anthropogenic VOC sources and ii) to evaluate their impact on local air quality. Up to 63 different VOCs were recognized and quantitatively determined in 6 fumaroles and 19 air samples collected in the Lakki caldera, where fumarolic emissions are located, and the outer ring of the island, including the Mandraki village and the main harbor. Air samples from the crater area show significant concentrations of alkanes, alkenes, cyclic, aromatics, and S- and O-bearing heterocycles directly deriving from the hydrothermal system, as well as secondary O-bearing compounds from oxidation of primary VOCs. At Mandraki village, C6H6/Σ(methylated aromatics) and Σ(linear)/Σ(branched) alkanes ratios <1 allow to distinguish an anthropogenic source related to emissions from outlet pipes of touristic and private boats and buses.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Volatile Organic Compounds/analysis , Air Pollution/statistics & numerical data , Greece
7.
Ann Ig ; 15(4 Suppl 1): 77-83, 2003.
Article in Italian | MEDLINE | ID: mdl-14677264

ABSTRACT

Quality and control of waters, particularly phreatic waters, is a strong need of a modern society and in particular of all administrations that is entitled to care for its citizen's health. The current legislation although not very strict, or at least not as strict and careful as it should be and definitely less than that of the World Health Organization (WHO), has recently constrained thresholds for maximum concentrations of chemical species dissolved into waters (anions, cations and heavy metals). Comparisons between data from water analyses collected in Cassino area and these thresholds have shown that these waters resulted of very good quality and they are not related to any source of inorganic pollution. Tap water should be preferred to mineral water usually in stores. Economically they are at least one thousands times cheaper and often can be considered of better quality.


Subject(s)
Water/analysis , Water/standards , Italy , Water Supply/legislation & jurisprudence , Water Supply/statistics & numerical data
8.
Anal Chem ; 73(15): 3709-15, 2001 Aug 01.
Article in English | MEDLINE | ID: mdl-11510838

ABSTRACT

A new analytical method for the determination of the sulfur species (SO2, H2S, S8(0)) in volcanic gases is proposed by revising, updating, and improving previous methods. The most significant advantages of the proposed procedure can briefly be summarized, as follows: (i) the reaction among sulfur species stops during the gas sampling by using preevacuated thorion-tapped vials with purified 0.15M Cd(OH)2 in 4 M NaOH to favor the precipitation of H2S as CdS; (ii) all the sulfur species (SO2, H2S, S8(0)) are analyzed by ion chromatography, after conversion to SO4, which allows the detection limit to be lowered significantly with respect to the previous studies; (iii) appropriate aliquots from intermediate steps may be used to determine other species commonly present in volcanic gases such as CO2, HCI, HF, HBr, HI, and so forth; (iv) determination of all the other gas species is not jeopardized by the proposed method, i.e., one single vial can be used for analyzing the full chemical composition of a volcanic gas with the exception of NH3. Statistical parameters calculated from gas sampling data at the F5 crater fumarole in Vulcano Island (Aeolian Islands, southern Italy), suggest that the standard error of mean (s/ root n) is higher for S (0.10), followed by SO2, H2S, and CO2 (0.04, 0.038, and 0.028, respectively). SO2 shows the higher variation coefficient (12.1%) followed by H2S, S, and CO2 (5.7, 1.5, and 0.8%, respectively). Furthermore, if the time dependence of sampling is taken into account, the measured values, instead of fluctuating in a random manner, tend to follow systematic patterns, out of statistical control, possibly suggesting a sort of natural fluctuation of the volcanic system. Other crater fumaroles from volcanic systems located in different geodynamical areas (Hawaii, USA, El Chichon, Mexico, Poas, Costa Rica) have been analyzed as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...