Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(12): 6006-6019, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37099381

ABSTRACT

Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.


Subject(s)
Histone Deacetylases , Nucleosomes , Chromatin/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Multiprotein Complexes/metabolism , Nucleosomes/genetics , Transcription Factors/metabolism , Humans
2.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30220461

ABSTRACT

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Subject(s)
Cholesterol, HDL/metabolism , Membrane Proteins/physiology , Membrane Proteins/ultrastructure , 3T3 Cells , Animals , Biological Transport/physiology , CD36 Antigens/metabolism , CHO Cells , Carrier Proteins/metabolism , Cell Line , Cell Membrane/metabolism , Cell Membrane/physiology , Cholesterol/metabolism , Cricetulus , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , Humans , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mitochondrial Membranes/metabolism , Sequence Alignment , Sterols/metabolism
3.
Exp Cell Res ; 320(2): 258-68, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24200502

ABSTRACT

Sialoglycoproteins make a significant contribution to the negative charge of the glomerular anionic glycocalyx-crucial for efficient functioning of the glomerular permselective barrier. Defects in sialylation have serious consequences on podocyte function leading to the development of proteinuria. The aim of the current study was to investigate potential mechanisms underlying puromycin aminonucleosisde (PAN)-induced desialylation and to ascertain whether they could be corrected by administration of free sialic acid. PAN treatment of podocytes resulted in a loss of sialic acid from podocyte proteins. This was accompanied by a reduction, in the expression of sialyltransferases and a decrease in the key enzyme of sialic acid biosynthesis N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). PAN treatment also attenuated expression of the antioxidant enzyme superoxide dismutase (mSOD) and concomitantly increased the generation of superoxide anions. Sialic acid supplementation rescued podocyte protein sialylation and partially restored expression of sialyltransferases. Sialic acid also restored mSOD mRNA expression and quenched the oxidative burst. These data suggest that PAN-induced aberrant sialylation occurs as a result of modulation of enzymes involved sialic acid metabolism some of which are affected by oxidative stress. These data suggest that sialic acid therapy not only reinstates functionally important negative charge but also acts a source of antioxidant activity.


Subject(s)
N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/pharmacology , Oxidative Stress/drug effects , Podocytes/drug effects , Protein Processing, Post-Translational/drug effects , Puromycin Aminonucleoside/pharmacology , Cells, Cultured , Drug Antagonism , Gene Expression Regulation, Enzymologic/drug effects , Humans , Podocytes/metabolism , Sialoglycoproteins/genetics , Sialoglycoproteins/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...