Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(33)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34107463

ABSTRACT

We report the complex implications of inter-diffusion between polycrystalline FePt/FeCo layers as an impact of the FeCo underlayer on the structural and magnetic properties of the system. The crystalline growth of FePt strongly reduces in an entirely diffused system compared to the one with lesser diffusion, while the crystalline structure of FeCo is apparently less affected. Charge redistribution occurs between Fe, Co and Pt ensuring increased Co-Pt and Fe-Pt interactions with higher diffusion. Thereafter, we combine hysteresis and magnetic force microscopy measurements to show that the interfacial deformations result in the distinct out-plane magnetic behaviour of the system. FeCo@FePt nano-composite like structure, originating due to interfacial diffusion, shows interactions between two magnetic phases with in-plane low anisotropy exhibiting wasp-shaped out-plane hysteresis loop. Whereas the layered structure of FePt/FeCo films shows random anisotropy with a significant out-plane contribution even in the polycrystalline films. Micromagnetic modelling demonstrates coercivity deterioration and reduction of switching field due to the formation of a slightly diffused interface. Contrarily, the experimental observations for complete diffusion between the two layers are explained by simulating the inhomogeneous distribution of anisotropies along the film plane. These studies provide deep perceptions of the magnetic properties of FePt/FeCo system governed by diffusion kinetics which are valuable to achieve desired magnetic characteristics using this system.

2.
Nanotechnology ; 32(30)2021 May 07.
Article in English | MEDLINE | ID: mdl-33857921

ABSTRACT

We report the stimulating effects of interfacial charge transfer process between spherical Ag nanoparticles and shuttlecock-shaped ZnO nanostructures observed by UV-visible spectroscopy and x-ray absorption spectroscopy. In specific, ZnO nanorods and shuttlecock-shaped ZnO/Ag nanostructures were developed using a simple chemical colloidal method and characterized for structural variations using XRD. The observed red shift in plasmonic peak and the increase in Urbach energy signify interfacial interactions and increased randomness in the hybrid ZnO/Ag nanostructures. Simultaneously, the enhanced intensity of deep-level emission in the ZnO/Ag hybrid suggests the increased recombination rate of electron-hole pairs. The red and blue emissions evolving with temperature subsequently suggests the presence of oxygen vacancies or zinc interstitials in the system. The decrease in intensities and emerging features in O K-edge and Zn L-edge indicates the charge transfer from Ag to ZnO at the interface of ZnO/Ag hybrids. Moreover, the differences in absorption edges with alternating light on/off conditions were analyzed for the exploitation of this ZnO-based system in various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...