Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 4(2): 362-75, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23871671

ABSTRACT

A key feature in Huntington disease (HD) is the accumulation of mutant Huntingtin (HTT) protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.


Subject(s)
Huntington Disease/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Inhibitors of Activated STAT/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , Catalytic Domain , Drosophila , Female , HeLa Cells , Humans , Huntingtin Protein , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Molecular Sequence Data , Mutation , Protein Inhibitors of Activated STAT/genetics , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/genetics , Transfection , Ubiquitin-Protein Ligases/metabolism
2.
Proc Natl Acad Sci U S A ; 110(32): E3027-36, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23872847

ABSTRACT

Transcriptional dysregulation is an early feature of Huntington disease (HD). We observed gene-specific changes in histone H3 lysine 4 trimethylation (H3K4me3) at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD.


Subject(s)
Brain/metabolism , Histones/metabolism , Huntington Disease/metabolism , Lysine/metabolism , Animals , Animals, Genetically Modified , Blotting, Western , Brain/pathology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression Profiling , Histone Demethylases , Humans , Huntingtin Protein , Huntington Disease/genetics , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Promoter Regions, Genetic/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...