Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 33(15)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34972096

ABSTRACT

Properties of van der Waals (vdW) heterostructures strongly depend on the quality of the interface between two dimensional (2D) layers. Instead of having atomically flat, clean, and chemically inert interfaces without dangling bonds, top-down vdW heterostructures are associated with bubbles and intercalated layers (ILs) which trap contaminations appeared during fabrication process. We investigate their influence on local electrical and mechanical properties of MoS2/WS2heterostructures using atomic force microscopy (AFM) based methods. It is demonstrated that domains containing bubbles and ILs are locally softer, with increased friction and energy dissipation. Since they prevent sharp interfaces and efficient charge transfer between 2D layers, electrical current and contact potential difference are strongly decreased. In order to reestablish a close contact between MoS2and WS2layers, vdW heterostructures were locally flattened by scanning with AFM tip in contact mode or just locally pressed with an increased normal load. Subsequent electrical measurements reveal that the contact potential difference between two layers strongly increases due to enabled charge transfer, while localI/Vcurves exhibit increased conductivity without undesired potential barriers.

2.
Nanotechnology ; 32(26)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33735842

ABSTRACT

Talc is a van der Waals and naturally abundant mineral with the chemical formula Mg3Si4O10(OH)2. Two-dimensional (2D) talc could be an alternative to hBN as van der Waals dielectric in 2D heterostructures. Furthermore, due to its good mechanical and frictional properties, 2D talc could be integrated into various hybrid microelectromechanical systems, or used as a functional filler in polymers. However, properties of talcas one of the main representatives of the phyllosilicate (sheet silicates) group are almost completely unexplored when ultrathin crystalline films and monolayers are considered. We investigate 2D talc flakes down to single layer thickness and reveal their efficiency for solid lubrication at the nanoscale. We demonstrate by atomic force microscopy based methods and contact angle measurements that several nanometer thick talc flakes have all properties necessary for efficient lubrication: a low adhesion, hydrophobic nature, and a low friction coefficient of 0.10 ± 0.02. Compared to the silicon-dioxide substrate, 2D talc flakes reduce friction by more than a factor of five, adhesion by around 20%, and energy dissipation by around 7%. Considering our findings, together with the natural abundance of talc, we put forward that 2D talc can be a cost-effective solid lubricant in micro- and nano-mechanical devices.

3.
Nanomaterials (Basel) ; 11(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401682

ABSTRACT

Development of paper-based sensors that do not suffer with humidity interference is desirable for practical environmental applications. In this work, a laser processing method was reported to effectively modulate the cross-sensitivity to humidity of ZnO-based UV (Ultraviolet) sensors printed on paper substrate. The results reveal that the laser induced zinc oxide (ZnO) surface morphology contributes to the super-hydrophobicity of the printed ZnO nanoparticles, reducing humidity interference while enhancing UV sensitivity. Herein, this conducted research highlights for the first time that laser processing is an attractive choice that reduces the cross-sensitivity to water vapor in the UV sensing response of ZnO-based devices printed on paper, paving the way to low-cost and sophisticated paper-based sensors.

4.
Nanotechnology ; 31(43): 435708, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-32634786

ABSTRACT

Semiconductor CdSe/CdS core-shell nanoplatelets exhibit narrow and intense absorption and photoluminescence spectra in the visible range, which makes them suitable for numerous applications in optoelectronics. Of particular interest is the preparation and optical characterization of thin films with an accurately controlled amount of nanoplatelets. Here we report on the use of spectroscopic ellipsometry for investigating the optical properties of ultrathin films composed of a single layer of negatively charged CdSe/CdS core-shell nanoplatelets prepared by the electrostatic layer-by-layer deposition on SiO2/Si substrates. Combining the ellipsometric spectra with atomic force microscopy measurements, we were able to infer the nanoplatelet film extinction spectra which was found to exhibit the two characteristic exciton peaks albeit blueshifted relative to the colloidal nanoplatelets.

5.
Sci Rep ; 10(1): 8476, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32439854

ABSTRACT

To implement large-area solution-processed graphene films in low-cost transparent conductor applications, it is necessary to have the control over the work function (WF) of the film. In this study we demonstrate a straightforward single-step chemical approach for modulating the work function of graphene films. In our approach, chemical doping of the film is introduced at the moment of its formation. The films are self-assembled from liquid-phase exfoliated few-layer graphene sheet dispersions by Langmuir-Blodgett technique at the water-air interfaces. To achieve a single-step chemical doping, metal standard solutions are introduced instead of water. Li standard solutions (LiCl, LiNO3, Li2CO3) were used as n-dopant, and gold standard solution, H(AuCl4), as p-dopant. Li based salts decrease the work function, while Au based salts increase the work function of the entire film. The maximal doping in both directions yields a significant range of around 0.7 eV for the work function modulation. In all cases when Li-based salts are introduced, electrical properties of the film deteriorate. Further, lithium nitrate (LiNO3) was selected as the best choice for n-type doping since it provides the largest work function modulation (by 400 meV), and the least influence on the electrical properties of the film.

6.
Analyst ; 145(11): 3983-3995, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32322872

ABSTRACT

The design of nanoparticles for application in medical diagnostics and therapy requires a thorough understanding of various aspects of nanoparticle-cell interactions. In this work, two unconventional methods for the study of nanoparticle effects on cells, Raman spectroscopy and atomic force microscopy (AFM), were employed to track the molecular and morphological changes that are caused by the interaction between cervical carcinoma-derived HeLa cells and two types of cerium dioxide (CeO2) nanoparticles, ones with dextran coating and the others with no coating. Multivariate statistical analyses of Raman spectra, such as principal component analysis and partial least squares regression, were applied in order to extract the variations in the vibrational features of cell biomolecules and through them, the changes in biomolecular content and conformation. Both types of nanoparticles induced changes in DNA, lipid and protein contents of the cell and variations of the protein secondary structure, whereas dextran-coated CeO2 affected the cell-growth rate to a higher extent. Atomic force microscopy showed changes in cell roughness, cell height and nanoparticle effects on surface molecular layers. The method differentiated between the impact of dextran-coated and uncoated CeO2 nanoparticles with higher precision than performed viability tests. Due to the holistic approach provided by vibrational information on the overall cell content, accompanied by morphological modifications observed by high-resolution microscopy, this methodology offers a wider picture of nanoparticle-induced cell changes, in a label-free single-cell manner.


Subject(s)
Cell Membrane/drug effects , Metal Nanoparticles/chemistry , Pseudopodia/drug effects , Cell Membrane/chemistry , Cerium/chemistry , Dextrans/chemistry , HeLa Cells , Humans , Microscopy, Atomic Force , Principal Component Analysis , Pseudopodia/chemistry , Regression Analysis , Spectrum Analysis, Raman , Surface Properties
7.
Nanoscale Adv ; 1(5): 1763-1771, 2019 May 15.
Article in English | MEDLINE | ID: mdl-36134228

ABSTRACT

Mechanical control of electrical properties in complex heterostructures, consisting of magnetic FeO x nanoparticles on top of manganite films, is achieved using atomic force microscope (AFM) based methods. Under applied pressure of the AFM tip, drop of the electrical conductivity is observed inducing an electrically insulating state upon a critical normal load. Current and surface potential maps suggest that the switching process is mainly governed by the flexoelectric field induced at the sample surface. The relaxation process of the electrical surface potential indicates that the diffusion of oxygen vacancies from the bulk of the manganite films towards the sample surface is the dominant relaxation mechanism. The magnetic FeO x nanoparticles, staying attached to the sample surface after the rubbing, protect the underlying manganite films and provide stability of the observed resistive switching effect. The employed mechanical control gives a new freedom in the design of resistive switching devices since it does not depend on the film thickness, and biasing is not needed.

8.
Nanoscale ; 10(39): 18835-18845, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30277249

ABSTRACT

Two-dimensional (2D) materials are envisaged as ultra-thin solid lubricants for nanomechanical systems. So far, their frictional properties at the nanoscale have been studied by standard friction force microscopy. However, lateral manipulation of nanoparticles is a more suitable method to study the dependence of friction on the crystallography of two contacting surfaces. Still, such experiments are lacking. In this study, we combine atomic force microscopy (AFM) based lateral manipulation and molecular dynamics simulations in order to investigate the movements of organic needle-like nanocrystallites grown by van der Waals epitaxy on graphene and hexagonal boron nitride. We observe that nanoneedle fragments - when pushed by an AFM tip - do not move along the original pushing directions. Instead, they slide on the 2D materials preferentially along the needles' growth directions, which act as invisible rails along commensurate directions. Further, when the nanocrystallites were rotated by applying a torque with the AFM tip across the preferential sliding directions, we find an increase of the torsional signal of the AFM cantilever. We demonstrate in conjunction with simulations that both, the significant friction anisotropy and preferential sliding directions are determined by the complex epitaxial relation and arise from the commensurate and incommensurate states between the organic nanocrystallites and the 2D materials.

9.
Nanotechnology ; 28(46): 465708, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29059053

ABSTRACT

We investigate the phase imaging of supported graphene using amplitude modulation atomic force microscopy (AFM), the so-called tapping mode. The phase contrast between graphene and the neighboring substrate grows in hard tapping conditions and the contrast is enhanced compared to the topographic one. Therefore, phase measurements could enable the high-contrast imaging of graphene and related two-dimensional materials and heterostructures, which is not achievable with conventional AFM based topographic measurements. Obtained phase maps are then transformed into energy dissipation maps, which are important for graphene applications in various nano-mechanical systems. From a fundamental point of view, energy dissipation gives further insight into mechanical properties. Reliable measurements, obtained in the repulsive regime, show that the energy dissipation on a graphene-covered substrate is lower than that on a bare one, so graphene provides certain shielding in tip-substrate interaction. Based on the obtained phase curves and their derivatives, as well as on correlation measurements based on AFM nanoindentation and force modulation microscopy, we conclude that the main dissipation channels in graphene-substrate systems are short-range hysteresis and long-range interfacial forces.

10.
Opt Lett ; 42(11): 2181-2184, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28569876

ABSTRACT

While previous tunable metasurfaces were based mainly on tuning of dielectric permittivity or losses in associated tunable elements, here we propose gain-assisted tunable metasurfaces as optical modulators with high ON-OFF ratio. They consist of a dye-doped film placed within metal-insulator-metal (MIM) cavities. Plasmonic modes with enhanced electric field significantly enhance both absorption and emission of light by dye molecules. As a result, it is possible to achieve the perfect absorption in MIM cavities with zero reflection, as well as to compensate losses thus achieving unit reflection. As a result, the achievable ON/OFF ratio is more than 100.

11.
Nanotechnology ; 28(12): 124002, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28220761

ABSTRACT

Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

12.
J Biotechnol ; 240: 14-22, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-27773756

ABSTRACT

The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process.


Subject(s)
Diclofenac , Drug Delivery Systems , Erythrocytes/drug effects , Hemolysis , Animals , Diclofenac/administration & dosage , Drug Compounding , Drug Delivery Systems/methods , Erythrocyte Membrane , Humans , Osmosis , Particle Size , Species Specificity , Swine
13.
Biotechnol Prog ; 32(4): 1046-55, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27254304

ABSTRACT

The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio-derived materials for delivery of dexamethasone-sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/-HESI-MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts' surface morphology by field emission-scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046-1055, 2016.


Subject(s)
Dexamethasone/analogs & derivatives , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Animals , Cattle , Chromatography, High Pressure Liquid , Dexamethasone/chemistry , Dexamethasone/metabolism , Erythrocyte Membrane/chemistry , Erythrocytes/chemistry , Swine , Tandem Mass Spectrometry , Time Factors
14.
Opt Lett ; 39(21): 6253-6, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25361327

ABSTRACT

Fabry-Perot resonators with inserted graphene are proposed for efficient reflectance modulation from terahertz to near-infrared frequencies. The resonators' structure is simple and consists of the Bragg top mirror, the cavity with the graphene, and the metallic bottom mirror. Reflectance from the cavities is electrically controlled by adjusting the Fermi level in the graphene. At near-infrared and terahertz frequencies, the amplitude modulation of the reflectance is dominant. On the other hand, tuning at mid-infrared frequencies is based on the spectral modulation of cavity resonances. By the impedance matching of resonators to a surrounding medium, the achieved insertion loss and modulation depth approach zero and 100%, respectively.

15.
Nano Lett ; 13(11): 5672-8, 2013.
Article in English | MEDLINE | ID: mdl-24111646

ABSTRACT

Acrylate nanoanchors of subdiffraction-limited diameter are written with optical stimulated emission depletion (STED) lithography. After incubation, 98% of all nanoanchors are loaded quickly with fluorescently labeled antibodies. Controlling the size of the nanoanchors allows for limiting the number of the antibodies. Direct stochastic optical reconstruction microscopy (dSTORM) imaging, statistical distribution of fluorescence, quantitative fluorescence readout, and single molecule blinking consistently prove that 80% of the nanoanchors with a 65 nm diameter are carrying only one antibody each, which are functional as confirmed with live erythrocytes.


Subject(s)
Acrylates/chemistry , Antibodies/chemistry , Nanostructures , Nanotechnology , Antibodies/immunology , Erythrocytes/immunology , Fluorescent Dyes/chemistry , Humans , Image Processing, Computer-Assisted , Microscopy, Fluorescence
16.
Nanotechnology ; 24(1): 015303, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23220750

ABSTRACT

Tapping mode atomic force microscopy (AFM) is employed for dynamic plowing lithography of exfoliated graphene on silicon dioxide substrates. The shape of the graphene sheet is determined by the movement of the vibrating AFM probe. There are two possibilities for lithography depending on the applied force. At moderate forces, the AFM tip only deforms the graphene and generates local strain of the order of 0.1%. For sufficiently large forces the AFM tip can hook graphene and then pull it, thus cutting the graphene along the direction of the tip motion. Electrical characterization by AFM based electric force microscopy, Kelvin probe force microscopy and conductive AFM allows us to distinguish between the truly separated islands and those still connected to the surrounding graphene.

17.
Opt Express ; 18(19): 20321-33, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20940924

ABSTRACT

Engineering of a refractive index profile is a powerful method for controlling electromagnetic fields. In this paper, we investigate possible realization of isotropic gradient refractive index media at optical frequencies using two-dimensional graded photonic crystals. They consist of dielectric rods with spatially varying radii and can be homogenized in broad frequency range within the lowest band. Here they operate in metamaterial regime, that is, the graded photonic crystals are described with spatially varying effective refractive index so they can be regarded as low-loss and broadband graded dielectric metamaterials. Homogenization of graded photonic crystals is done with Maxwell-Garnett effective medium theory. Based on this theory, the analytical formulas are given for calculations of the rods radii which makes the implementation straightforward. The frequency range where homogenization is valid and where graded photonic crystal based devices work properly is discussed in detail. Numerical simulations of the graded photonic crystal based Luneburg lens and electromagnetic beam bend show that the homogenization based on Maxwell-Garnett theory gives very good results for implementation of devices intended to steer and focus electromagnetic fields.


Subject(s)
Electromagnetic Fields , Manufactured Materials , Refractometry/instrumentation , Refractometry/methods , Crystallization , Equipment Design , Equipment Failure Analysis , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...