Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(22): 10099-10102, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38768193

ABSTRACT

The homogeneous high-entropy wolframite-type solid solution (Mn1/5Co1/5Ni1/5Cu1/5Cd1/5)WO4 was prepared by solid-state reaction at 1000 °C. Elongated "crystals" were grown from the Na2WO4 flux, but their strongly broadened powder X-ray diffraction patterns indicated partial dissolution. Nevertheless, successive annealing of the homogeneous solid solution for 3-4 h at 800, 700, and 600 °C did not bring any sign of dissolution. Thus, the material is kinetically stable at low temperatures although thermodynamically unstable. The long-range antiferromagnetic order was established at TN ∼ 24.8 K. Based on magnetization and specific heat measurements, a magnetic phase diagram was built, demonstrating the presence of an additional field-induced phase. In contrast to the parent MnWO4, no dielectric anomaly has been found down to 2 K.

2.
Inorg Chem ; 63(11): 5012-5019, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38438970

ABSTRACT

The concept of high-entropy oxides has triggered extensive research of this novel class of materials because their numerous functional properties are usually not mere linear combinations of those of the components. Here, we introduce the new series of compositionally complex honeycomb-layered magnets Na3-xLixT2SbO6 (T = Cu1/3Ni1/3Co1/3). An unusual feature of the system is its nonmonotonous dependences of the monoclinic lattice parameters b and ß on x. Rietveld refinement of the crystal structures of the Na and Li end members reveals apparent Sb-T site inversion in the former and considerable Li-Cu site inversion in the latter. The materials are characterized by measurements of specific heat Cp, magnetization M, and ac and dc magnetic susceptibility χ. Na3T2SbO6 exhibits sharp long-range antiferromagnetic order (TN = 10.2 K) preceded by noticeable correlation effects at elevated temperatures. The magnetic phase diagram of Na3T2SbO6 is established. Introduction of Li, just at x = 0.8, destroys AFM order, resulting in spin-cluster glass behavior attributed to Li/Cu inversion, with TG growing with x to 10.4 K at x = 3.

3.
Inorg Chem ; 63(11): 5199-5207, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38447157

ABSTRACT

New nitrosonium manganese(II) nitrate, (NO)Mn6(NO3)13, has been synthesized and structurally characterized. In the temperature range of 45-298 K, the crystal is hexagonal (centrosymmetric sp. gr. P63/m). Mn2+ ions are assembled into tubes along axis c with both NO3- filling and coating. The nitrosonium cation is located in the framework cavity and is disordered by a 3-fold axis. At the temperature TS1 = 190 K, a structural phase transition related to the libration of the intertube NO3 group and a small variation of Mn polyhedron is observed. Moreover, the anomalies in physical properties of (NO)Mn6(NO3)13 allow suggesting that ordering of NO+ units occurs at low temperatures. The antiferromagnetic ordering in this compound is preceded by the formation of a short-range correlation regime at about 25 K and takes place in two steps at TN1 = 12.0 K and TN2 = 8.4 K.

4.
Dalton Trans ; 52(28): 9631-9638, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37377378

ABSTRACT

The missing member of the rosiaite family, CoGeTeO6, was synthesized by mild ion-exchange reactions and characterized by magnetization M and specific heat Cp measurements. It exhibits a successive short- and long-range magnetic ordering at Tshort-range ≈ 45 K and TN = 15 K, respectively. Based on these measurements, the magnetic H-T phase diagram was established, showing two antiferromagnetic phases separated by a spin-flop transition. The reason why the pronounced short-range correlation occurs at a temperature nearly three times higher than TN was found by evaluating the Co-O⋯O-Co exchange interactions using energy-mapping analysis. Although CoGeTeO6 has a layered structure, its magnetic structure consists of three-dimensional antiferromagnetic lattices made up of rhombic boxes of Co2+ ions. The experimental data obtained at high temperatures agree well with the computational results by treating the Co2+ ions of CoGeTeO6 as S = 3/2 ions, but the heat capacity and magnetization data were obtained at low temperatures by treating the Co2+ ion as a Jeff = 1/2 ion.

5.
Dalton Trans ; 52(27): 9247-9253, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37357965

ABSTRACT

Anhydrous copper tellurite sulfate, Cu3TeO3(SO4)2, has been synthesized via vapor transport reactions in sealed silica glass ampoules. In measurements of magnetization M, magnetic susceptibility χ, specific heat Cp and X-band electron spin resonance, a long-range antiferromagnetic order at TN = 13 K and an H-T magnetic phase diagram have been established. One-third of Cu2+ ions were found to form magnetically silent dimers. A peak in dielectric permittivity ε, which accompanies the Néel order, allows considering Cu3TeO3(SO4)2 as a magnetoelectric multiferroic material of the second type. Density functional theory calculations provided estimations of leading exchange interaction parameters.

6.
Materials (Basel) ; 15(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500188

ABSTRACT

Physical properties of the mixed-valent tellurate of lithium and manganese, LiMn2TeO6, were investigated in measurements of ac and dc magnetic susceptibility χ, magnetization M, specific heat Cp, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) in the temperature range 2−300 K under magnetic field up to 9 T. The title compound orders magnetically in two steps at T1 = 20 K and T2 = 13 K. The intermediate phase at T2 < T < T1 is fully suppressed by magnetic field µ0H of about 4 T. Besides magnetic phases transitions firmly established in static measurements, relaxation-type phenomena were observed well above magnetic ordering temperature in resonant measurements.

7.
Materials (Basel) ; 15(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35407895

ABSTRACT

The static and dynamic magnetic properties and the specific heat of K2Ni2TeO6 and Li2Ni2TeO6 were examined and it was found that they undergo a long-range ordering at TN = 22.8 and 24.4 K, respectively, but exhibit a strong short-range order. At high temperature, the magnetic susceptibilities of K2Ni2TeO6 and Li2Ni2TeO6 are described by a Curie-Weiss law, with Curie-Weiss temperatures Θ of approximately -13 and -20 K, respectively, leading to the effective magnetic moment of about 4.46 ± 0.01 µB per formula unit, as expected for Ni2+ (S = 1) ions. In the paramagnetic region, the ESR spectra of K2Ni2TeO6 and Li2Ni2TeO6 show a single Lorentzian-shaped line characterized by the isotropic effective g-factor, g = 2.19 ± 0.01. The energy-mapping analysis shows that the honeycomb layers of A2Ni2TeO6 (A = K, Li) and Li3Ni2SbO6 adopt a zigzag order, in which zigzag ferromagnetic chains are antiferromagnetically coupled, because the third nearest-neighbor spin exchanges are strongly antiferromagnetic while the first nearest-neighbor spin exchanges are strongly ferromagnetic, and that adjacent zigzag-ordered honeycomb layers prefer to be ferromagnetically coupled. The short-range order of the zigzag-ordered honeycomb lattices of K2Ni2TeO6 and Li2Ni2TeO6 is equivalent to that of an antiferromagnetic uniform chain, and is related to the short-range order of the ferromagnetic chains along the direction perpendicular to the chains.

8.
Materials (Basel) ; 14(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832185

ABSTRACT

The non-stoichiometric system Li0.8Ni0.6Sb0.4O2 is a Li-deficient derivative of the zigzag honeycomb antiferromagnet Li3Ni2SbO6. Structural and magnetic properties of Li0.8Ni0.6Sb0.4O2 were studied by means of X-ray diffraction, magnetic susceptibility, specific heat, and nuclear magnetic resonance measurements. Powder X-ray diffraction data shows the formation of a new phase, which is Sb-enriched and Li-deficient with respect to the structurally honeycomb-ordered Li3Ni2SbO6. This structural modification manifests in a drastic change of the magnetic properties in comparison to the stoichiometric partner. Bulk static (dc) magnetic susceptibility measurements show an overall antiferromagnetic interaction (Θ = -4 K) between Ni2+ spins (S = 1), while dynamic (ac) susceptibility reveals a transition into a spin glass state at a freezing temperature TSG ~ 8 K. These results were supported by the absence of the λ-anomaly in the specific heat Cp(T) down to 2 K. Moreover, combination of the bulk static susceptibility, heat capacity and 7Li NMR studies indicates a complicated temperature transformation of the magnetic system. We observe a development of a cluster spin glass, where the Ising-like Ni2+ magnetic moments demonstrate a 2D correlated slow short-range dynamics already at 12 K, whereas the formation of 3D short range static ordered clusters occurs far below the spin-glass freezing temperature at T ~ 4 K as it can be seen from the 7Li NMR spectrum.

9.
Materials (Basel) ; 14(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34683545

ABSTRACT

GdFeTeO6 and GdGaTeO6 have been prepared and their structures refined by the Rietveld method. Both are superstructures of the rosiaite type (space group P3¯1c). Their thermodynamic properties have been investigated by means of magnetization M and specific heat Cp measurements, evidencing the formation of the long-range antiferromagnetic order at TN = 2.4 K in the former compound and paramagnetic behavior down to 2 K in the latter compound. Large magnetocaloric effect allows considering GdFeTeO6 for the magnetic refrigeration at liquid hydrogen stage. Density functional theory calculations produce estimations of leading Gd-Gd, Gd-Fe and Fe-Fe interactions suggesting unique chiral 120° magnetic structure of Fe3+ (S = 5/2) moments and Gd3+ (J = 7/2) moments rotating in opposite directions (clockwise/anticlockwise) within weakly coupled layers of the rosiaite type crystal structure.

10.
Dalton Trans ; 48(45): 17070-17077, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31701973

ABSTRACT

Antiferromagnetic PbMnTeO6, also known as mineral kuranakhite, has been reported recently to have all three cations in trigonal prismatic coordination, which is extremely unusual for both Mn(4+) and Te(6+). In this work, the phase was reproduced with the same lattice parameters and Néel temperature TN = 20 K. However, powder neutron diffraction unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations within the chiral space group P312. The same symmetry was proposed for SrMnTeO6 and PbGeTeO6, instead of the reported space groups P6[combining macron]2m and P31m, respectively. PbMnTeO6 was found to be a robust antiferromagnet with an assumingly substantial scale of exchange interactions since the Néel temperature did not show any changes in external magnetic fields up to 7 T. The determined effective magnetic moment µeff = 3.78µB was in excellent agreement with the numerical estimation using the effective g-factor g = 1.95 directly measured here by electron spin resonance (ESR). Both specific heat and ESR data indicated the two-dimensional character of magnetism in the compound under study. The combination of chirality with magnetic order makes PbMnTeO6 a promising material with possible multiferroic properties.

11.
Inorg Chem ; 58(17): 11333-11350, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31411867

ABSTRACT

A new oxide, sodium-iron antimonate, Na2FeSbO5, was synthesized and structurally characterized, and its static and dynamic magnetic properties were comprehensively studied both experimentally by dc and ac magnetic susceptibility, magnetization, specific heat, electron spin resonance (ESR) and Mössbauer measurements, and theoretically by density functional calculations. The resulting single-crystal structure (a = 15.6991(9) Å; b = 5.3323 (4) Å; c = 10.8875(6) Å; S.G. Pbna) consists of edge-shared SbO6 octahedral chains, which alternate with vertex-linked, magnetically active FeO4 tetrahedral chains. The 57Fe Mössbauer spectra confirmed the presence of high-spin Fe3+ (3d5) ions in a distorted tetrahedral oxygen coordination. The magnetic susceptibility and specific heat data show the absence of a long-range magnetic ordering in Na2FeSbO5 down to 2 K, but ac magnetic susceptibility unambigously demonstrates spin-glass-type behavior with a unique two-step freezing at Tf1 ≈ 80 K and Tf2 ≈ 35 K. Magnetic hyperfine splitting of 57Fe Mössbauer spectra was observed below T* ≈ 104 K (Tf1 < T*). The spectra just below T* (Tf1 < T < T*) exhibit a relaxation behavior caused by critical spin fluctuations, indicating the existence of short-range correlations. The stochastic model of ionic spin relaxation was used to account for the shape of the Mössbauer spectra below the freezing temperature. A complex slow dynamics is further supported by ESR data revealing two different absorption modes presumably related to ordered and disordered segments of spin chains. The data imply a spin-cluster ground state for Na2FeSbO5.

SELECTION OF CITATIONS
SEARCH DETAIL
...