Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 9750, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328482

ABSTRACT

Silk fibroin is an important biomaterial for photonic devices in wearable systems. The functionality of such devices is inherently influenced by the stimulation from elastic deformations, which are mutually coupled through photo-elasticity. Here, we investigate the photo-elasticity of silk fibroin employing optical whispering gallery mode resonation of light at the wavelength of 1550 nm. The fabricated amorphous (Silk I) and thermally-annealed semi-crystalline structure (Silk II) silk fibroin thin film cavities display typical Q-factors of about 1.6 × 104. Photo-elastic experiments are performed tracing the TE and TM shifts of the whispering gallery mode resonances upon application of an axial strain. The strain optical coefficient K' for Silk I fibroin is found to be 0.059 ± 0.004, with the corresponding value for Silk II being 0.129 ± 0.004. Remarkably, the elastic Young's modulus, measured by Brillouin light spectroscopy, is only about 4% higher in the Silk II phase. However, differences between the two structures are pronounced regarding the photo-elastic properties due to the onset of ß-sheets that dominates the Silk II structure.


Subject(s)
Fibroins , Fibroins/chemistry , Silk/chemistry , Elastic Modulus , Biocompatible Materials , Optics and Photonics
2.
Photoacoustics ; 30: 100478, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025113

ABSTRACT

Observation of Fano resonances in various physical phenomena is usually ascribed to the coupling of discrete states with background continuum, as it has already been reported for various physical phenomena. Here, we report on Fano lineshapes of nonthermal GHz phonons generated and observed with pumped Brillouin light scattering in gold-silicon thin membranes, overlapping the broad zero-shift background of yet questionable origin. The system's broken mid-plane symmetry enabled the generation of coherent quasi-symmetric and quasi-antisymmetric Lamb acoustic waves/phonons, leading to the four orders-of-magnitude enhancement of Brillouin light scattering. Notably, the membrane asymmetry resulted also in the mode-dependent Stokes and anti-Stokes Fano lineshapes asymmetry.

3.
Adv Mater ; 35(9): e2209100, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36482148

ABSTRACT

Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light-matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe2 with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure. A strong non-linear plasmon-exciton interaction that transfers the energy of sub-bandgap photons very efficiently to the semiconductor is observed, leaving the metal cold until non-radiative exciton recombination heats the nanoparticles on hundreds of femtoseconds timescales. The results resolve a multi-directional energy exchange on timescales shorter than the electronic thermalization of the nanometal. Electron-phonon coupling and diffusive charge-transfer determine the subsequent energy flow. This complex dynamics opens perspectives for optoelectronic and photocatalytic applications, while providing a constraining experimental testbed for state-of-the-art modelling.

4.
ACS Nano ; 16(12): 20419-20429, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36475620

ABSTRACT

Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal-polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod-soft matter nanocomposites for acousto-plasmonic applications.

5.
Phys Rev Lett ; 129(13): 135701, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36206436

ABSTRACT

Revealing the bonding and time-evolving atomic dynamics in functional materials with complex lattice structures can update the fundamental knowledge on rich physics therein, and also help to manipulate the material properties as desired. As the most prototypical chalcogenide phase change material, Ge_{2}Sb_{2}Te_{5} has been widely used in optical data storage and nonvolatile electric memory due to the fast switching speed and the low energy consumption. However, the basic understanding of the structural dynamics on the atomic scale is still not clear. Using femtosecond electron diffraction, structure factor calculation, and time-dependent density-functional theory molecular dynamic simulation, we reveal the photoinduced ultrafast transition of the local correlated structure in the averaged rocksalt phase of Ge_{2}Sb_{2}Te_{5}. The randomly oriented Peierls distortion among unit cells in the averaged rocksalt phase of Ge_{2}Sb_{2}Te_{5} is termed as local correlated structures. The ultrafast suppression of the local Peierls distortions in the individual unit cell gives rise to a local structure change from the rhombohedral to the cubic geometry within ∼0.3 ps. In addition, the impact of the carrier relaxation and the large number of vacancies to the ultrafast structural response is quantified and discussed. Our Letter provides new microscopic insights into contributions of the local correlated structure to the transient structural and optical responses in phase change materials. Moreover, we stress the significance of femtosecond electron diffraction in revealing the local correlated structure in the subunit cell and the link between the local correlated structure and physical properties in functional materials with complex microstructures.

6.
ACS Nano ; 16(7): 11124-11135, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35793703

ABSTRACT

The microscopic arrangement of atoms and molecules is the determining factor in how materials behave and perform; i.e., the structure determines the property, a traditional paradigm in materials science. Photoexcitation-driven manipulation of the crystal structure and associated electronic properties in quantum materials provides opportunities for the exploration of exotic physics and practical applications; however, a generalized mechanism for such symmetry engineering is absent. Here, by ultrafast electron diffraction, structure factor calculation, and TDDFT-MD simulations, we report the photoinduced concurrent intralayer and interlayer structural transitions in the Td and 1T' phases of XTe2 (X = Mo, W). We discuss the modification of multiple quantum electronic states associated with the intralayer and interlayer structural transitions, such as the topological band inversion and the higher-order topological state. The twin structures and the stacking faults in XTe2 are also identified by ultrafast structural responses. The comprehensive study of the ultrafast structural response in XTe2 suggests the traversal of all double-well potential energy surfaces (DWPES) by laser excitation, which is expected to be an intrinsic mechanism in the field of photoexcitation-driven global/local symmetry engineering and also a critical ingredient inducing the exotic properties in the non-equilibrium state in a large number of material systems.

7.
Nano Lett ; 22(2): 578-585, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34904831

ABSTRACT

The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 µs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.


Subject(s)
Nanostructures , Polymers , Indoles , Nanotechnology , Polymers/chemistry
8.
Nano Lett ; 21(14): 6171-6178, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279103

ABSTRACT

We combine ultrafast electron diffuse scattering experiments and first-principles calculations of the coupled electron-phonon dynamics to provide a detailed momentum-resolved picture of lattice thermalization in black phosphorus. The measurements reveal the emergence of highly anisotropic nonthermal phonon populations persisting for several picoseconds after exciting the electrons with a light pulse. Ultrafast dynamics simulations based on the time-dependent Boltzmann formalism are supplemented by calculations of the structure factor, defining an approach to reproduce the experimental signatures of nonequilibrium structural dynamics. The combination of experiments and theory enables us to identify highly anisotropic electron-phonon scattering processes as the primary driving force of the nonequilibrium lattice dynamics in black phosphorus. Our approach paves the way toward unravelling and controlling microscopic energy flows in two-dimensional materials and van der Waals heterostructures, and may be extended to other nonequilibrium phenomena involving coupled electron-phonon dynamics such as superconductivity, phase transitions, or polaron physics.

9.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: mdl-34172443

ABSTRACT

Singlet exciton fission (SEF) is a key process for developing efficient optoelectronic devices. An aspect rarely probed directly, yet with tremendous impact on SEF properties, is the nuclear structure and dynamics involved in this process. Here, we directly observe the nuclear dynamics accompanying the SEF process in single crystal pentacene using femtosecond electron diffraction. The data reveal coherent atomic motions at 1 THz, incoherent motions, and an anisotropic lattice distortion representing the polaronic character of the triplet excitons. Combining molecular dynamics simulations, time-dependent density-functional theory, and experimental structure factor analysis, the coherent motions are identified as collective sliding motions of the pentacene molecules along their long axis. Such motions modify the excitonic coupling between adjacent molecules. Our findings reveal that long-range motions play a decisive part in the electronic decoupling of the electronically correlated triplet pairs and shed light on why SEF occurs on ultrafast time scales.

10.
Adv Mater ; 33(23): e2008614, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938047

ABSTRACT

Few-layer van der Waals (vdW) materials have been extensively investigated in terms of their exceptional electronic, optoelectronic, optical, and thermal properties. Simultaneously, a complete evaluation of their mechanical properties remains an undeniable challenge due to the small lateral sizes of samples and the limitations of experimental tools. In particular, there is no systematic experimental study providing unambiguous evidence on whether the reduction of vdW thickness down to few layers results in elastic softening or stiffening with respect to the bulk. In this work, micro-Brillouin light scattering is employed to investigate the anisotropic elastic properties of single-crystal free-standing 2H-MoSe2 as a function of thickness, down to three molecular layers. The so-called elastic size effect, that is, significant and systematic elastic softening of the material with decreasing numbers of layers is reported. In addition, this approach allows for a complete mechanical examination of few-layer membranes, that is, their elasticity, residual stress, and thickness, which can be easily extended to other vdW materials. The presented results shed new light on the ongoing debate on the elastic size-effect and are relevant for performance and durability of implementation of vdW materials as resonators, optoelectronic, and thermoelectric devices.

11.
Sci Adv ; 6(51)2020 Dec.
Article in English | MEDLINE | ID: mdl-33355135

ABSTRACT

Telecommunication devices exploit hypersonic gigahertz acoustic phonons to mediate signal processing with microwave radiation, and charge carriers to operate various microelectronic components. Potential interactions of hypersound with charge carriers can be revealed through frequency- and momentum-resolved studies of acoustic phonons in photoexcited semiconductors. Here, we present an all-optical method for excitation and frequency-, momentum-, and space-resolved detection of gigahertz acoustic waves in a spatially confined model semiconductor. Lamb waves are excited in a bare silicon membrane using femtosecond optical pulses and detected with frequency-domain micro-Brillouin light spectroscopy. The population of photoexcited gigahertz phonons displays a hundredfold enhancement as compared with thermal equilibrium. The phonon spectra reveal Stokes-anti-Stokes asymmetry due to propagation, and strongly asymmetric Fano resonances due to coupling between the electron-hole plasma and the photoexcited phonons. This work lays the foundation for studying hypersonic signals in nonequilibrium conditions and, more generally, phonon-dependent phenomena in photoexcited nanostructures.

12.
Nano Lett ; 20(5): 3728-3733, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32212733

ABSTRACT

Black phosphorus has recently attracted significant attention for its highly anisotropic properties. A variety of ultrafast optical spectroscopies has been applied to probe the carrier response to photoexcitation, but the complementary lattice response has remained unaddressed. Here we employ femtosecond electron diffraction to explore how the structural anisotropy impacts the lattice dynamics after photoexcitation. We observe two time scales in the lattice response, which we attribute to electron-phonon and phonon-phonon thermalization. Pronounced differences between armchair and zigzag directions are observed, indicating a nonthermal state of the lattice lasting up to ∼60 ps. This nonthermal state is characterized by a modified anisotropy of the atomic vibrations compared to equilibrium. Our findings provide insights in both electron-phonon as well as phonon-phonon coupling and bear direct relevance for any application of black phosphorus in nonequilibrium conditions.

13.
ACS Nano ; 12(8): 7710-7720, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-29995378

ABSTRACT

We study the ultrafast structural dynamics, in response to electronic excitations, in heterostructures composed of size-selected Au nanoclusters on thin-film substrates with the use of femtosecond electron diffraction. Various forms of atomic motion, such as thermal vibrations, thermal expansion, and lattice disordering, manifest as distinct and quantifiable reciprocal-space observables. In photoexcited supported nanoclusters, thermal equilibration proceeds through intrinsic heat flow between their electrons and their lattice and extrinsic heat flow between the nanoclusters and their substrate. For an in-depth understanding of this process, we have extended the two-temperature model to the case of 0D/2D heterostructures and used it to describe energy flow among the various subsystems, to quantify interfacial coupling constants and to elucidate the role of the optical and thermal substrate properties. When lattice heating of Au nanoclusters is dominated by intrinsic heat flow, a reversible disordering of atomic positions occurs, which is absent when heat is injected as hot substrate phonons. The present analysis indicates that hot electrons can distort the lattice of nanoclusters, even if the lattice temperature is below the equilibrium threshold for surface premelting. Based on simple considerations, the effect is interpreted as activation of surface diffusion due to modifications of the potential energy surface at high electronic temperatures. We discuss the implications of such a process in structural changes during surface chemical reactions.

14.
Sci Rep ; 3: 1209, 2013.
Article in English | MEDLINE | ID: mdl-23383377

ABSTRACT

One dimensional (1D) nanostructures of semiconducting oxides and elemental chalcogens culminate over the last decade in nanotechnology owing to their unique properties exploitable in several applications sectors. Whereas several synthetic strategies have been established for rational design of 1D materials using solution chemistry and high temperature evaporation methods, much less attention has been given to the laser-assisted growth of hybrid nanostructures. Here, we present a laser-assisted method for the controlled fabrication of Te nanotubes. A series of light-driven phase transition is employed to controllably transform Te nanotubes to core-Te/sheath-TeO(2) and/or even neat TeO(2) nanowires. This solid-state laser-processing of semiconducting materials apart from offering new opportunities for the fast and spatially controlled fabrication of anisotropic nanostructures, provides a means of simultaneous growing and integrating these nanostructures into an optoelectronic or photonic device.


Subject(s)
Metal Nanoparticles/chemistry , Nanotechnology/methods , Nanotubes/chemistry , Semiconductors , Tellurium/chemistry , Chalcogens/chemistry , Lasers , Lasers, Solid-State , Light , Nanowires/chemistry , Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...