Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 234: 350-359, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28340440

ABSTRACT

Bioaugmentation with hydrolytic microbes was applied to improve the methane yield of bioreactors fed with agricultural wastes. The efficiency of Clostridium thermocellum and Melioribacter roseus to degrade lignocellulosic matter was evaluated in batch and continuously stirred tank reactors (CSTRs). Results from batch assays showed that C. thermocellum enhanced the methane yield by 34%. A similar increase was recorded in CSTR during the bioaugmentation period; however, at steady-state the effect was noticeably lower (7.5%). In contrast, the bioaugmentation with M. roseus did not promote markedly the anaerobic biodegradability, as the methane yield was increased up to 10% in batch and no effect was shown in CSTR. High-throughput 16S rRNA amplicon sequencing was used to assess the effect of bioaugmentation strategies on bacterial and archaeal populations. The microbial analysis revealed that both strains were not markedly resided into biogas microbiome. Additionally, the applied strategies did not alter significantly the microbial communities.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Bioreactors/microbiology , Lignin/metabolism , Agriculture , Anaerobiosis , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Biofuels , Hydrolysis , Methane/biosynthesis , Microbiota , RNA, Ribosomal, 16S/genetics
2.
Bioresour Technol ; 225: 246-253, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27898314

ABSTRACT

The effect of various micro-aeration strategies on the anaerobic digestion (AD) of wheat straw was thoroughly examined using a mixture of inocula, containing compost and well digested sludge from biogas plant. The aim was to determine the most efficient oxygen load, pulse repetition and treatment duration, resulting in the highest methane production. The oxygen load had the largest impact on the biodegradability of straw, among the examined variables. More specifically, a micro-aeration intensity of 10mLO2/gVS was identified as the critical threshold above which the AD performance was more susceptible to instability. The highest enhancement in biogas production was achieved by injecting 5mLO2/gVS for a consecutive 3-day treatment period, presenting a 7.2% increase compared to the untreated wheat straw. Nevertheless, the results from optimisation case study indicated a higher increase of 9% by injecting 7.3mLO2/gVS, distributed in 2 pulses during a slightly shorter treatment period (i.e. 47h).


Subject(s)
Biodegradation, Environmental , Biofuels , Bioreactors , Lignin/chemistry , Air , Sewage , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...