Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985896

ABSTRACT

In this paper, we present a new methodology for creating 3D ordered porous nanocomposites based on anodic aluminum oxide template with polyaniline (PANI) and silver NPs. The approach includes in situ synthesis of polyaniline on templates of anodic aluminum oxide nanomembranes and laser-induced deposition (LID) of Ag NPs directly on the pore walls. The proposed method allows for the formation of structures with a high aspect ratio of the pores, topological ordering and uniformity of properties throughout the sample, and a high specific surface area. For the developed structures, we demonstrated their effectiveness as non-enzymatic electrochemical sensors on glucose in a concentration range crucial for medical applications. The obtained systems possess high potential for miniaturization and were applied to glucose detection in real objects-laboratory rat blood plasma.

2.
Nanomaterials (Basel) ; 13(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36615998

ABSTRACT

We present an efficient and easily implemented approach for creating stable electrocatalytically active nanocomposites based on polyaniline (PANI) with metal NPs. The approach combines in situ synthesis of polyaniline followed by laser-induced deposition (LID) of Ag, Pt, and AgPt NPs. The observed peculiarity of LID of PANI is the role of the substrate during the formation of multi-metallic nanoparticles (MNP). This allows us to solve the problem of losing catalytically active particles from the electrode's surface in electrochemical use. The synthesized PANI/Ag, PANI/Pt, and PANI/AgPt composites were studied with different techniques, such as SEM, EDX, Raman spectroscopy, and XPS. These suggested a mechanism for the formation of MNP on PANI. The MNP-PANI interaction was demonstrated, and the functionality of the nanocomposites was studied through the electrocatalysis of the hydrogen evolution reaction. The PANI/AgPt nanocomposites demonstrated both the best activity and the most stable metal component in this process. The suggested approach can be considered as universal, since it can be extended to the creation of electrocatalytically active nanocomposites with various mono- and multi-metallic NPs.

3.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35010096

ABSTRACT

Multimetallic plasmonic systems usually have distinct advantages over monometallic nanoparticles due to the peculiarity of the electronic structure appearing in advanced functionality systems, which is of great importance in a variety of applications including catalysis and sensing. Despite several reported techniques, the controllable synthesis of multimetallic plasmonic nanoparticles in soft conditions is still a challenge. Here, mono-, bi- and tri-metallic nanoparticles were successfully obtained as a result of a single step laser-induced deposition approach from monometallic commercially available precursors. The process of nanoparticles formation is starting with photodecomposition of the metal precursor resulting in nucleation and the following growth of the metal phase. The deposited nanoparticles were studied comprehensively with various experimental techniques such as SEM, TEM, EDX, XPS, and UV-VIS absorption spectroscopy. The size of monometallic nanoparticles is strongly dependent on the type of metal: 140-200 nm for Au, 40-60 nm for Ag, 2-3 nm for Pt. Bi- and trimetallic nanoparticles were core-shell structures representing monometallic crystallites surrounded by an alloy of respective metals. The formation of an alloy phase took place between monometallic nanocrystallites of different metals in course of their growth and agglomeration stage.

4.
Materials (Basel) ; 14(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375131

ABSTRACT

Surfaces functionalized with metal nanoparticles (NPs) are of great interest due to their wide potential applications in sensing, biomedicine, nanophotonics, etc. However, the precisely controllable decoration with plasmonic nanoparticles requires sophisticated techniques that are often multistep and complex. Here, we present a laser-induced deposition (LID) approach allowing for single-step surface decoration with NPs of controllable composition, morphology, and spatial distribution. The formation of Ag, Pt, and mixed Ag-Pt nanoparticles on a substrate surface was successfully demonstrated as a result of the LID process from commercially available precursors. The deposited nanoparticles were characterized with SEM, TEM, EDX, X-ray diffraction, and UV-VIS absorption spectroscopy, which confirmed the formation of crystalline nanoparticles of Pt (3-5 nm) and Ag (ca. 100 nm) with plasmonic properties. The advantageous features of the LID process allow us to demonstrate the spatially selective deposition of plasmonic NPs in a laser interference pattern, and thereby, the formation of periodic arrays of Ag NPs forming diffraction grating.

5.
Molecules ; 24(13)2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31252657

ABSTRACT

An efficient approach towards the synthesis of 6-aryl-4-azidocinnolines was developed with the aim of exploring the photophysical properties of 6-aryl-4-azidocinnolines and their click reaction products with alkynes, 6-aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. The synthetic route is based on the Richter-type cyclization of 2-ethynyl-4-aryltriazenes with the formation of 4-bromo-6-arylcinnolines and nucleophilic substitution of a bromine atom with an azide functional group. The developed synthetic approach is tolerant to variations of functional groups on the aryl moiety. The resulting azidocinnolines were found to be reactive in both CuAAC with terminal alkynes and SPAAC with diazacyclononyne, yielding 4-triazolylcinnolines. It was found that 4-azido-6-arylcinnolines possess weak fluorescent properties, while conversion of the azido function into a triazole ring led to complete fluorescence quenching. The lack of fluorescence in triazoles could be explained by the non-planar structure of triazolylcinnolines and a possible photoinduced electron transfer (PET) mechanism. Among the series of 4-triazolylcinnoline derivatives a compound bearing hydroxyalkyl substituent at triazole ring was found to be cytotoxic to HeLa cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemical synthesis , Triazoles/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Click Chemistry , HeLa Cells , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Molecular Structure , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...