Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(45): 30316-30331, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-28951896

ABSTRACT

Matrix metalloproteinases (MMP) are an important family of proteases which catalyze the degradation of extracellular matrix components. While the mechanism of peptide cleavage is well established, the process of enzyme regeneration, which represents the rate limiting step of the catalytic cycle, remains unresolved. This step involves the loss of the newly formed N-terminus (amine) and C-terminus (carboxylate) protein fragments from the site of catalysis coupled with the inclusion of one or more solvent waters. Here we report a novel crystal structure of membrane type I MMP (MT1-MMP or MMP-14), which includes a small peptide bound at the catalytic Zn site via its C-terminus. This structure models the initial product state formed immediately after peptide cleavage but before the final proton transfer to the bound amine; the amine is not present in our system and as such proton transfer cannot occur. Modeling of the protein, including earlier structural data of Bertini and coworkers [I. Bertini, et al., Angew. Chem., Int. Ed., 2006, 45, 7952-7955], suggests that the C-terminus of the peptide is positioned to form an H-bond network to the amine site, which is mediated by a single oxygen of the functionally important Glu240 residue, facilitating efficient proton transfer. Additional quantum chemical calculations complemented with magneto-optical and magnetic resonance spectroscopies clarify the role of two additional, non-catalytic first coordination sphere waters identified in the crystal structure. One of these auxiliary waters acts to stabilize key intermediates of the reaction, while the second is proposed to facilitate C-fragment release, triggered by protonation of the amine. Together these results complete the enzymatic cycle of MMPs and provide new design criteria for inhibitors with improved efficacy.


Subject(s)
Matrix Metalloproteinase 14/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Models, Molecular , Protein Conformation , Binding Sites , Catalysis , Catalytic Domain , Matrix Metalloproteinase 14/metabolism , Solvents
2.
J Phys Chem B ; 121(31): 7431-7442, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28636363

ABSTRACT

In this molecular dynamics simulation study, we analyze intermolecular vibrations in the hydration shell of a solvated enyzme, the membrane type 1-matrix metalloproteinase, with high spatial resolution. Our approach allows us to characterize vibrational signatures of the local hydrogen bond network, the translational mobility of water molecules, as well as the molecular entropy, in specific local environments. Our study demonstrates the heterogeneity of water properties within the hydration shell of a complex biomolecule. We define a classification scheme based on the vibrational density of states that allows us to distinguish separate classes of hydration water species and facilitates the description of hydration water properties at distinct hydration sites. The results demonstrate that no single characteristic of the protein surface is sufficient to determine the properties of nearby water. The protein surface geometry, quantified here by the number of protein atoms in the vicinity of a hydration water molecule, as well as the chemical nature of a solvated protein functional group, influences dynamic and thermodynamic properties of solvating water molecules.

3.
J Chem Theory Comput ; 12(8): 3561-70, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27420296

ABSTRACT

Quantum mechanics/molecular mechanics (QM/MM) simulations of reactions in solutions and in solvated enzymes can be performed using the QM/MM-Ewald approach with periodic boundary conditions (PBC) or a nonperiodic treatment with a finite solvent shell (droplet model). To avoid the changes in QM codes that are required in standard QM/MM-Ewald implementations, we present a general method (Gen-Ew) for periodic QM/MM calculations that can be used with any QM method in the QM/MM framework. The Gen-Ew approach approximates the QM/MM-Ewald method by representing the PBC potential by virtual charges on a sphere and the QM density by electrostatic potential (ESP) charges. Test calculations show that the deviations between Gen-Ew and QM/MM-Ewald results are generally small enough to justify the application of the Gen-Ew method in the absence of a suitable QM/MM-Ewald implementation. We compare the results from periodic QM/MM calculations (QM/MM-Ewald, Gen-Ew) to their nonperiodic counterparts (droplet model) for five test reactions in water and for the Claisen rearrangement in chorismate mutase. The periodic and nonperiodic QM/MM treatments give similar free energy profiles for the reactions in solution (umbrella sampling, free energy deviations of the order of 1 kcal/mol) and essentially the same energy profile (constrained geometry optimizations) for the Claisen rearrangement in chorismate mutase. In all cases considered, long-range electrostatic interactions are thus well captured by nonperiodic QM/MM calculations in a water droplet of reasonable size (radius of 15-20 Å). This provides further justification for the widespread use of the computationally efficient droplet model in QM/MM studies of reactions in solution and in enzymes.


Subject(s)
Models, Molecular , Quantum Theory , Ammonium Chloride/chemistry , Molecular Conformation , Molecular Dynamics Simulation , Phosphates/chemistry , Static Electricity , Thermodynamics , Water/chemistry
4.
J Comput Chem ; 37(19): 1801-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27140531

ABSTRACT

We address methodological issues in quantum mechanics/molecular mechanics (QM/MM) calculations on a zinc-dependent enzyme. We focus on the first stage of peptide bond cleavage by matrix metalloproteinase-2 (MMP-2), that is, the nucleophilic attack of the zinc-coordinating water molecule on the carbonyl carbon atom of the scissile fragment of the substrate. This step is accompanied by significant charge redistribution around the zinc cation, bond cleavage, and bond formation. We vary the size and initial geometry of the model system as well as the computational protocol to demonstrate the influence of these choices on the results obtained. We present QM/MM potential energy profiles for a set of snapshots randomly selected from QM/MM-based molecular dynamics simulations and analyze the differences in the computed profiles in structural terms. Since the substrate in MMP-2 is located on the protein surface, we investigate the influence of the thickness of the water layer around the enzyme on the QM/MM energy profile. Thin water layers (0-2 Å) give unrealistic results because of structural reorganizations in the active-site region at the protein surface. A 12 Å water layer appears to be sufficient to capture the effect of the solvent; the corresponding QM/MM energy profile is very close to that obtained from QM/MM/SMBP calculations using the solvent macromolecular boundary potential (SMBP). We apply the optimized computational protocol to explain the origin of the different catalytic activity of the Glu116Asp mutant: the energy barrier for the first step is higher, which is rationalized on structural grounds. © 2016 Wiley Periodicals, Inc.


Subject(s)
Matrix Metalloproteinase 2/chemistry , Quantum Theory , Matrix Metalloproteinase 2/metabolism , Molecular Dynamics Simulation
5.
J Comput Chem ; 36(21): 1621-30, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26132652

ABSTRACT

The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase-2 (MMP-2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all-atom three-dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace-Gln-Gly∼Ile-Ala-Gly-Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four-step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C-N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5-10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate-limiting step in MMP-2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations.


Subject(s)
Matrix Metalloproteinase 2/metabolism , Catalytic Domain , Humans , Matrix Metalloproteinase 2/chemistry , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Conformation , Proteolysis , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...