Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 281: 119034, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35074114

ABSTRACT

To achieve long-term patent small-diameter (<6 mm) vascular implants, biomimetic vascular grafts have gained much attention in promoting in situ blood vessel regeneration. In this study, hierarchical-structured bacterial cellulose/potato starch (BC/PS) composites were biosynthesized by the addition of swollen PS. Investigations on the physicochemical properties of BC/PS composites showed that the properties could be improved and tailored by the addition of swollen PS. The composites displayed a morphology, water content, thermal properties, mechanical properties, and biocompatibility appropriate for vascular tissue engineering. Most importantly, the BC/PS grafts, with a dense inner surface and a circumferential macroporous outer layer, possessed 75% patency and promoted rapid blood vessel regeneration in in vivo assessment on rabbits, with complete endothelium monolayer, organized smooth muscle cells, rich new capillaries, and deposited extracellular matrix. Collectively, these findings demonstrate that hierarchical-structured BC/PS tubes hold great promise as artificial small-diameter vascular grafts.


Subject(s)
Cellulose , Solanum tuberosum , Animals , Blood Vessel Prosthesis , Cellulose/chemistry , Cellulose/pharmacology , Rabbits , Starch , Tissue Engineering
2.
Carbohydr Polym ; 273: 118565, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34560976

ABSTRACT

Bacterial cellulose (BC) is a promising unique material for various biomedical and cosmetic applications due to its morphology, mechanical strength, high purity, high water uptake, non-toxicity, chemical controllability, and biocompatibility. Today, extensive investigation is into the manufacturing of BC-based composites with other components such as nanoparticles, synthetic polymers, natural polymers, carbon materials, and biomolecules, which will allow the development of a wide range of biomedical and cosmetic products. Moreover, the addition of different reinforcement substances into BC and the organized arrangement of BC nano-fibers have proven a promising improvement in their properties for biomedical applications. This review paper highlights the progress in synthesizing BC-based composites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering, and cancer treatment. It emphasizes high-performance BC-based materials and cosmetic applications. Furthermore, it presents challenges yet to be defeated and future possibilities for BC-based composites for biomedical and cosmetic applications.


Subject(s)
Cellulose/chemistry , Animals , Antineoplastic Agents/therapeutic use , Cellulose/therapeutic use , Cosmetics , Drug Carriers/chemistry , Humans , Tissue Scaffolds/chemistry , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...