Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Radiother Oncol ; 190: 110039, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040123

ABSTRACT

BACKGROUND: Cancer cell survival under stress conditions is a prerequisite for the development of treatment resistance. The survival kinase DYRK1B is a key regulator of stress survival pathways and might thereby also contribute to radiation resistance. Here we investigate the strategy of targeting DYRK1B in combination with ionizing radiation (IR) to enhance tumor cell killing under stress conditions. METHODS: DYRK1B expression, ROS formation and DNA damage were investigated under serum-starvation (0.1% FBS), hypoxia (0.2%, 1% O2) and IR. The combined treatment modality of IR and DYRK1B inhibition was investigated in 2D and in spheroids derived from the colorectal cancer cell line SW620, and in primary patient-derived colorectal carcinoma (CRC) organoids. RESULTS: Expression of DYRK1B was upregulated under starvation and hypoxia, but not in response to IR. The small molecule DYRK1B inhibitor AZ191 and shRNA-mediated DYRK1B knockdown significantly reduced proliferative activity and clonogenicity of SW620 tumor cells alone and in combination with IR under serum-starved conditions, which correlated with increased ROS levels and DNA damage. Furthermore, AZ191 successfully targeted the hypoxic core of tumor spheroids while IR preferentially targeted normoxic cells in the rim of the spheroids. A combined treatment effect was also observed in CRC-organoids but not in healthy tissue-derived organoids. CONCLUSION: Combined treatment with the DYRK1B inhibitor AZ191 and IR resulted in (supra-) additive tumor cell killing in colorectal tumor cell systems and in primary CRC organoids. Mechanistic investigations support the rational to target the stress-enhanced survival kinase DYRK1B in combination with irradiation to overcome hypoxia- and starvation-induced treatment resistances.


Subject(s)
Neoplasms , Protein-Tyrosine Kinases , Humans , Cell Line, Tumor , Dyrk Kinases , Hypoxia , Protein-Tyrosine Kinases/genetics , Reactive Oxygen Species
2.
Cancers (Basel) ; 13(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546280

ABSTRACT

In this study, we determined whether Smac mimetics play a role in metastasis, specifically in circulation, tumor extravasation and growth in a metastatic site. Reports suggest inducing the degradation of IAPs through use of Smac mimetics, alters the ability of the tumor cell to metastasize. However, a role for the immune or stromal compartment in affecting the ability of tumor cells to metastasize upon loss of IAPs has not been defined. To address this open question, we utilized syngeneic tumor models in a late-stage model of metastasis. Loss of cIAP1 in the endothelial compartment, rather than depletion of cIAP2 or absence of cIAP1 in the hematopoietic compartment, caused reduction of tumor load in the lung. Our results underline the involvement of the endothelium in hindering tumor cell extravasation upon loss of cIAP1, in contrast to the immune compartment. Endothelial specific depletion of cIAP1 did not lead to cell death but resulted in an unresponsive endothelium barrier to permeability factors causing a decrease in tumor cell extravasation. Surprisingly, lymphotoxin alpha (LTA), and not TNF, secreted by the tumor cells, was critical for the extravasation. Using TCGA, we found high LTA mRNA expression correlated with decreased survival in kidney carcinoma and associated with advanced disease stage. Our data suggest that Smac mimetics, targeting cIAP1/2, reduce metastasis to the lung by inhibiting tumor cell extravasation.

3.
Cell Death Dis ; 11(1): 56, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31974356

ABSTRACT

The original version of this article contained an error in the name of one of the co-authors (Erika Owsley). This has been corrected in the PDF and HTML versions.

4.
Cell Death Dis ; 10(10): 700, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541082

ABSTRACT

The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap-/- macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap-/- myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1ß, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components.

5.
Cell Death Dis ; 9(5): 529, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29743550

ABSTRACT

Inhibitor of Apoptosis Proteins act as E3 ubiquitin ligases to regulate NF-κB signalling from multiple pattern recognition receptors including NOD2, as well as TNF Receptor Superfamily members. Loss of XIAP in humans causes X-linked Lymphoproliferative disease type 2 (XLP-2) and is often associated with Crohn's disease. Crohn's disease is also caused by mutations in the gene encoding NOD2 but the mechanisms behind Crohn's disease development in XIAP and NOD2 deficient-patients are still unknown. Numerous other mutations causing Crohn's Disease occur in genes controlling various aspects of autophagy, suggesting a strong involvement of autophagy in preventing Crohn's disease. Here we show that the IAP proteins cIAP2 and XIAP are required for efficient fusion of lysosomes with autophagosomes. IAP inhibition or loss of both cIAP2 and XIAP resulted in a strong blockage in autophagic flux and mitophagy, suggesting that XIAP deficiency may also drive Crohn's Disease due to defects in autophagy.


Subject(s)
Autophagosomes , Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Crohn Disease/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Lysosomes/metabolism , Membrane Fusion , Mitophagy , Animals , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Crohn Disease/genetics , Crohn Disease/pathology , Inhibitor of Apoptosis Proteins/genetics , Lysosomes/genetics , Mice
7.
Cell Death Dis ; 8(2): e2588, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28151480

ABSTRACT

Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 1, 3 (RIPK1, RIPK3) and mixed lineage kinase domain-like protein (MLKL). The kinase of RIPK3 phosphorylates MLKL causing MLKL to form a pore-like structure, allowing intracellular contents to release and cell death to occur. Alternatively, RIPK1 and RIPK3 have been shown to regulate cytokine production directly influencing inflammatory immune infiltrates. Recent data suggest that necroptosis may contribute to the malignant transformation of tumor cells in vivo and we asked whether necroptosis may have a role in the tumor microenvironment altering the ability of the tumor to grow or metastasize. To determine if necroptosis in the tumor microenvironment could promote inflammation alone or by initiating necroptosis and thereby influencing growth or metastasis of tumors, we utilized a syngeneic tumor model of metastasis. Loss of RIPK3 in the tumor microenvironment reduced the number of tumor nodules in the lung by 46%. Loss of the kinase activity in RIPK1, a member of the necrosome also reduced tumor nodules in the lung by 38%. However, the loss of kinase activity in RIPK3 or the loss of MLKL only marginally altered the ability of tumor cells to form in the lung. Using bone marrow chimeras, the decrease in tumor nodules in the Ripk3-/- appeared to be due to the stromal compartment rather than the hematopoietic compartment. Transmigration assays showed decreased ability of tumor cells to transmigrate through the vascular endothelial layer, which correlated with decreased permeability in the Ripk3-/- mice after tumor injection. In response to permeability factors, such as vascular endothelial growth factor, RIPK3 null endothelial cells showed decreased p38/HSP27 activation. Taken together, our results suggest an alternative function for RIPK1/RIPK3 in vascular permeability leading to decreased number of metastasis.


Subject(s)
Capillary Permeability/physiology , Necrosis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis/physiology , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Death/physiology , Cell Line , Cell Line, Tumor , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/metabolism , Inflammation/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Necrosis/pathology , Vascular Endothelial Growth Factor A/metabolism
8.
Immunol Cell Biol ; 95(2): 160-165, 2017 02.
Article in English | MEDLINE | ID: mdl-27904150

ABSTRACT

Understanding how inhibitor of apoptosis proteins (IAPs) regulate apoptosis and necroptosis has been fast-forwarded by the use of Smac mimetics (SMs) to deplete or inhibit the IAPs, specifically cIAP1, cIAP2 and XIAP. The loss or inhibition of cIAP1, cIAP2 and XIAP causes the majority of cells to be sensitized to death receptor induced cell death, such as with tumour necrosis factor (TNF). Mouse genetics shows that there is some functional redundancy and the use of SMs has allowed us to understand how changing the composition of proteins recruited to TNF receptor 1 on TNF ligation can alter protein complex formation and activation of apoptosis or necroptosis, particularly when caspases are inhibited. Determining when or how caspase inhibition occurs physiologically combined with the loss of IAPs will be the next challenge in understanding the ability of IAPs to prevent cell death and/or limit inflammation.


Subject(s)
Apoptosis , Inflammation/metabolism , Inflammation/pathology , Inhibitor of Apoptosis Proteins/metabolism , Animals , Cell Survival , Humans , Models, Genetic , Necrosis
10.
Cancer Cell ; 29(2): 145-58, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26859455

ABSTRACT

Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.


Subject(s)
Antineoplastic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/physiology , Leukemia/drug therapy , Mitochondrial Proteins/physiology , Molecular Mimicry , Protein Serine-Threonine Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins , Humans , Mice , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...