Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(20): 10311-10324, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31070634

ABSTRACT

A detailed reaction network is proposed for the pyrolysis and desulfurization of hexyl sulfide in the presence or absence of both supercritical water (SCW) and hexadecane, but without any added H2 or catalyst, for T = 400-450 °C. The new kinetic model is developed using the Reaction Mechanism Generator (RMG) software where most of the rate coefficients are derived from quantum chemical calculations. We previously reported that pentane, carbon monoxide and carbon dioxide are major products of hexyl sulfide desulfurization in SCW, but not in the anhydrous pyrolysis of hexyl sulfide. The observation of CO and CO2 in the reaction products indicates that water effectively acts as a hydrogen source; presumably this assists in sulfur reduction to H2S. Kinetic parameters for several of the important reactions are calculated using transition state theory and quantum chemical calculations at the CBS-QB3 level of theory and then further refined using CCSD(T)-F12//cc-pVTZ-F12 single point energies. Predictions from the new kinetic model agree with factor-of-2 accuracy with new and previously published experimental data for hexyl sulfide conversion and for yields of most major products, either neat or in a hexadecane solvent, both in the presence and absence of SCW. Flux analysis was then used to identify the most important reaction steps, and sensitivity analysis was used to propose reactions that should be studied further in the future to decrease the model's uncertainty. This study establishes the molecular role of water as diluent, hydrogen bond donor, and reductant in the decomposition of hexyl sulfide. Future work to add molecular weight growth pathways to the model would lead to a more complete mechanism, resulting in improved predictions of product yields.

2.
Rev Sci Instrum ; 89(7): 074102, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068092

ABSTRACT

In recent years, predictions of product branching for reactions of consequence to both combustion and atmospheric chemistry have outpaced validating experiments. An apparatus is described that aims to fill this void by combining several well-known experimental techniques into one: flash photolysis for radical generation, multiple-pass laser absorption spectrometry (LAS) for overall kinetics measurements, and time-resolved photoionization time-of-flight mass spectrometry (PI TOF-MS) for product branching quantification. The sensitivity of both the LAS and PI TOF-MS detection techniques is shown to be suitable for experiments with initial photolytically generated radical concentrations of ∼1 × 1012 molecules cm-3. As it is fast (µs time resolution) and non-intrusive, LAS is preferred for accurate kinetics (time-dependence) measurements. By contrast, PI TOF-MS is preferred for product quantification because it provides a near-complete picture of the reactor composition in a single mass spectrum. The value of simultaneous LAS and PI TOF-MS detection is demonstrated for the chemically interesting phenyl radical + propene system.

3.
J Phys Chem A ; 121(40): 7655-7666, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28910105

ABSTRACT

The thermal decomposition mechanism of thiophene has been investigated both experimentally and theoretically. Thermal decomposition experiments were done using a 1 mm × 3 cm pulsed silicon carbide microtubular reactor, C4H4S + Δ â†’ Products. Unlike previous studies these experiments were able to identify the initial thiophene decomposition products. Thiophene was entrained in either Ar, Ne, or He carrier gas, passed through a heated (300-1700 K) SiC microtubular reactor (roughly ≤100 µs residence time), and exited into a vacuum chamber. The resultant molecular beam was probed by photoionization mass spectroscopy and IR spectroscopy. The pyrolysis mechanisms of thiophene were also investigated with the CBS-QB3 method using UB3LYP/6-311++G(2d,p) optimized geometries. In particular, these electronic structure methods were used to explore pathways for the formation of elemental sulfur as well as for the formation of H2S and 1,3-butadiyne. Thiophene was found to undergo unimolecular decomposition by five pathways: C4H4S → (1) S═C═CH2 + HCCH, (2) CS + HCCCH3, (3) HCS + HCCCH2, (4) H2S + HCC-CCH, and (5) S + HCC-CH═CH2. The experimental and theoretical findings are in excellent agreement.

4.
J Phys Chem A ; 121(26): 4953-4960, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28558212

ABSTRACT

The thermal decomposition of ethanethiol was studied using a 1 mm × 2 cm pulsed silicon carbide microtubular reactor, CH3CH2SH + Δ â†’ Products. Unlike previous studies these experiments were able to identify the initial ethanethiol decomposition products. Ethanethiol was entrained in either an Ar or a He carrier gas, passed through a heated (300-1700 K) SiC microtubular reactor (roughly ≤100 µs residence time) and exited into a vacuum chamber. Within one reactor diameter the gas cools to less than 50 K rotationally, and all reactions cease. The resultant molecular beam was probed by photoionization mass spectroscopy and IR spectroscopy. Ethanethiol was found to undergo unimolecular decomposition by three pathways: CH3CH2SH → (1) CH3CH2 + SH, (2) CH3 + H2C═S, and (3) H2C═CH2 + H2S. The experimental findings are in good agreement with electronic structure calculations.

5.
Phys Chem Chem Phys ; 16(30): 15739-15751, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24756159

ABSTRACT

A Chirped-Pulse millimeter-Wave (CPmmW) spectrometer is applied to the study of chemical reaction products that result from pyrolysis in a Chen nozzle heated to 1000-1800 K. Millimeter-wave rotational spectroscopy unambiguously determines, for each polar reaction product, the species, the conformers, relative concentrations, conversion percentage from precursor to each product, and, in some cases, vibrational state population distributions. A chirped-pulse spectrometer can, within the frequency range of a single chirp, sample spectral regions of up to ∼10 GHz and simultaneously detect many reaction products. Here we introduce a modification to the CPmmW technique in which multiple chirps of different spectral content are applied to a molecular beam pulse that contains the pyrolysis reaction products. This technique allows for controlled allocation of its sensitivity to specific molecular transitions and effectively doubles the bandwidth of the spectrometer. As an example, the pyrolysis reaction of ethyl nitrite, CH3CH2ONO, is studied, and CH3CHO, H2CO, and HNO products are simultaneously observed and quantified, exploiting the multi-chirp CPmmW technique. Rotational and vibrational temperatures of some product molecules are determined. Subsequent to supersonic expansion from the heated nozzle, acetaldehyde molecules display a rotational temperature of 4 ± 1 K. Vibrational temperatures are found to be controlled by the collisional cooling in the expansion, and to be both species- and vibrational mode-dependent. Rotational transitions of vibrationally excited formaldehyde in levels ν4, 2ν4, 3ν4, ν2, ν3, and ν6 are observed and effective vibrational temperatures for modes 2, 3, 4, and 6 are determined and discussed.

6.
J Chem Phys ; 139(10): 104310, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-24050347

ABSTRACT

The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 µsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 µTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.


Subject(s)
Benzaldehydes/chemistry , Biomass , Furaldehyde/chemistry , Hot Temperature , Mass Spectrometry/methods , Spectrophotometry, Infrared/methods
7.
J Chem Phys ; 137(16): 164308, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-23126711

ABSTRACT

A heated SiC microtubular reactor has been used to decompose acetaldehyde and its isotopomers (CH(3)CDO, CD(3)CHO, and CD(3)CDO). The pyrolysis experiments are carried out by passing a dilute mixture of acetaldehyde (roughly 0.1%-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 50-200 Torr with the SiC tube wall temperature in the range 1200-1900 K. Characteristic residence times in the reactor are 50-200 µs after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 µTorr. The reactor has been modified so that both pulsed and continuous modes can be studied, and results from both flow regimes are presented. Using various detection methods (Fourier transform infrared spectroscopy and both fixed wavelength and tunable synchrotron radiation photoionization mass spectrometry), a number of products formed at early pyrolysis times (roughly 100-200 µs) are identified: H, H(2), CH(3), CO, CH(2)=CHOH, HC≡CH, H(2)O, and CH(2)=C=O; trace quantities of other species are also observed in some of the experiments. Pyrolysis of rare isotopomers of acetaldehyde produces characteristic isotopic signatures in the reaction products, which offers insight into reaction mechanisms that occur in the reactor. In particular, while the principal unimolecular processes appear to be radical decomposition CH(3)CHO (+M) → CH(3) + H + CO and isomerization of acetaldehyde to vinyl alcohol, it appears that the CH(2)CO and HCCH are formed (perhaps exclusively) by bimolecular reactions, especially those involving hydrogen atom attacks.


Subject(s)
Acetaldehyde/chemistry , Hot Temperature , Mass Spectrometry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...