Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(8): 104970, 2023 08.
Article in English | MEDLINE | ID: mdl-37380078

ABSTRACT

Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.


Subject(s)
Endoplasmic Reticulum , Molecular Dynamics Simulation , Calcium/metabolism , Calcium Signaling , Endoplasmic Reticulum/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Temperature , Humans
2.
Gels ; 8(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36135261

ABSTRACT

The synthesis of hydrogel beads involving natural polymers is, nowadays, a leading research area. Among natural polymers, starch and chitosan represent two biomolecules with proof of efficiency and low economic impact in various utilization fields. Therefore, herein, the features of hydrogel beads obtained from chitosan and three sorts of starch (potato, wheat and rise starches), grafted with acrylonitrile and then amidoximated, were deeply investigated for their use as sorbents for heavy metal ions and dyes. The hydrogel beads were prepared by ionotropic gelation/covalent cross-linking of chitosan and functionalized starches. The chemical structure of the hydrogel beads was analyzed by FT-IR spectroscopy; their morphology was revealed by optical and scanning electron microscopies, while the influence of the starch functionalization strategies on the crystallinity changes was evaluated by X-ray diffraction. Molecular dynamics simulations were used to reveal the influence of the grafting reactions and grafted structure on the starch conformation in solution and their interactions with chitosan. The sorption capacity of the hydrogel beads was tested in batch experiments, as a function of the beads' features (synthesis protocol, starch sort) and simulated polluted water, which included heavy metal ions (Cu2+, Co2+, Ni2+ and Zn2+) and small organic molecules (Direct Blue 15 and Congo red).

3.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683677

ABSTRACT

Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption-desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed.

4.
Front Chem ; 10: 836994, 2022.
Article in English | MEDLINE | ID: mdl-35281557

ABSTRACT

Polyamines have important roles in the modulation of the cellular function and are ubiquitous in cells. The polyamines putrescine2+, spermidine3+, and spermine4+ represent the most abundant organic counterions of the negatively charged DNA in the cellular nucleus. These polyamines are known to stabilize the DNA structure and, depending on their concentration and additional salt composition, to induce DNA aggregation, which is often referred to as condensation. However, the modes of interactions of these elongated polycations with DNA and how they promote condensation are still not clear. In the present work, atomistic molecular dynamics (MD) computer simulations of two DNA fragments surrounded by spermidine3+ (Spd3+) cations were performed to study the structuring of Spd3+ "caged" between DNA molecules. Microsecond time scale simulations, in which the parallel DNA fragments were constrained at three different separations, but allowed to rotate axially and move naturally, provided information on the conformations and relative orientations of surrounding Spm3+ cations as a function of DNA-DNA separation. Novel geometric criteria allowed for the classification of DNA-Spd3+ interaction modes, with special attention given to Spd3+ conformational changes in the space between the two DNA molecules (caged Spd3+). This work shows how changes in the accessible space, or confinement, around DNA affect DNA-Spd3+ interactions, information fundamental to understanding the interactions between DNA and its counterions in environments where DNA is compacted, e.g. in the cellular nucleus.

5.
Biomater Sci ; 9(19): 6623-6640, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34582532

ABSTRACT

Biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as an antifouling component in biomedical devices. Experimental studies have shown that the size of PEG can weaken polycation-polyanion interactions, like those between branched polyethyleneimine (b-PEI) and DNA in gene carriers, but details of its cause and underlying interactions on the atomic scale are still not clear. To better understand the interaction mechanisms in the formation of polyplexes between b-PEI-PEG based carriers and DNA, we have used a combination of in silico tools and experiments on three multicomponent systems differing in PEG MW. Using the PEI-PEG-squalene-dsDNA systems of the same size, both in the all-atom MD simulations and in experimental in-gel electrophoresis measurements, we found that the binding between DNA and the vectors is highly influenced by the size of PEG, with the binding efficiency increasing with a shorter PEG length. The mechanism of how PEG interferes with the binding between PEI and DNA is explained using a two-step MD simulation protocol that showed that the DNA-vector interactions are influenced by the PEG length due to the hydrogen bond formation between PEI and PEG. Although computationally demanding we find it important to study molecular systems of the same size both in silico and in a laboratory and to simulate the behaviour of the carrier prior to the addition of bioactive molecules to understand the molecular mechanisms involved in the formation of the polyplex.


Subject(s)
Polyethylene Glycols , Squalene , Computer Simulation , DNA , Particle Size , Polyethyleneimine , Transfection
6.
J Phys Chem B ; 125(2): 587-600, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33428423

ABSTRACT

Binary alcohol + ether liquid mixtures are of significant importance as potential biofuels or additives for internal combustion engines and attract considerable fundamental interest as model systems containing one strongly H-bonded self-associating component (alcohol) and one that is unable to do so (ether), but that can interact strongly as a H-bond acceptor. In this context, the excess thermodynamic properties of these mixtures, specifically the excess molar enthalpies and volumes (HE and VE), have been extensively measured. Butanol isomer + di-n-butyl ether (DBE) mixtures received significant attention because of interesting differences in their VE, changing from negative (1- and isobutanol) to positive (2- and tert-butanol) with increasing alkyl group branching. With the aim of shedding light on the differences in alcohol self-association and cross-species H-bonding, considered responsible for the observed differences, we studied representative 1- and 2-butanol + DBE mixtures by molecular dynamics simulations and experimental excess property measurements. The simulations reveal marked differences in the self-association of the two isomers and, while supporting the existing interpretations of the HE and VE in a general sense, our results suggest, for the first time, that subtle changes in H-bonded topologies may contribute significantly to the anomalous volumetric properties of these mixtures.

7.
RSC Adv ; 10(63): 38304-38315, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-35517536

ABSTRACT

A novel DPyDB-C[double bond, length as m-dash]N-18C6 compound was synthesised by linking a pyrene moiety to each phenyl group of dibenzo-18-crown-6-ether, the crown ether, through -HC[double bond, length as m-dash]N- bonds and characterized by FTIR, 1H-NMR, 13C-NMR, TGA, and DSC techniques. The quantitative 13C-NMR analysis revealed the presence of two position isomers. The electronic structure of the DPyDB-C[double bond, length as m-dash]N-18C6 molecule was characterized by UV-vis and fluorescence spectroscopies in four solvents with different polarities to observe particular behavior of isomers, as well as to demonstrate a possible non-bonding chemical association (such as ground- and excited-state associations, namely, to probe if there were forming dimers/excimers). The interpretation of the electronic structure was realized through QM calculations. The TD-CAM-B3LYP functional, at the 6-311+G(d,p) basis set, indicated the presence of predominant π → π* and mixed π → π* + n → π* transitions, in line with the UV-vis experimental data. Even though DPyDB-C[double bond, length as m-dash]N-18C6 computational studies revealed a π-extended conjugation effect with predominantly π → π* transitions, thorough fluorescence analysis was observed a weak emission, as an effect of PET and ACQ. In particular, the WAXD analysis of powder and thin films obtained from n-hexane, 1,2-dichloroethane, and ethanol indicated an amorphous organization, whereas from toluene a smectic ordering was obtained. These results were correlated with MD simulation, and it was observed that the molecular geometry of DPyDB-C[double bond, length as m-dash]N-18C6 molecule played a defining role in the pyrene stacking arrangement.

8.
Faraday Discuss ; 209(0): 125-148, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29974103

ABSTRACT

Artificial water channels (AWCs) have been designed for water transport across membranes with the aim to mimic the high water permeability observed for biological systems such as aquaporins (∼108-109 water molecules per s per channel), as well as their selectivity to reject ion permeation at the same time. Recent works on designed self-assembling alkylureido-ethylimidazole compounds forming imidazole-quartet channels (I-quartets), have shown both high water permeability and total ionic-rejection. I-quartets are thus promising candidates for further development of AWCs. However, the molecular mechanism of water permeation as well as I-quartet organization and stability in a membrane environment need to be fully understood to guide their optimal design. Here, we use a wide range of all-atom molecular dynamics (MD) simulations and their analysis to understand the structure/activity relationships of the I-quartet channels. Four different types with varying alkyl chain length or chirality have been studied in a complex fully hydrated lipid bilayer environment at both microsecond and nanosecond scale. Microsecond simulations show two distinct behaviors; (i) two out of four systems maintain chiral dipolar oriented water wires, but also undergo a strong reorganization of the crystal shape, (ii) the two other I-quartet channels completely lose the initial organization, nonetheless keeping a water transport activity. Short MD simulations with higher time resolution were conducted to characterize the dynamic properties of water molecules in these model channels and provided a detailed hypothesis on the molecular mechanism of water permeation. The ordered confined water was characterized with quantitative measures of hydrogen-bond life-time and single particle dynamics, showing variability among I-quartet channels. We will further discuss the underlying assumptions, currently based on self-aggregation simulations and crystal patches embedded in lipid bilayer simulations and attempt to describe possible alternative approaches to computationally capture the water permeation mechanism and the self-assembly process of these AWCs.

9.
Mater Sci Eng C Mater Biol Appl ; 81: 167-176, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28887961

ABSTRACT

Nano-hydroxyapatite (nHAp), surface functionalized with linear polyethylenimine (LPEI), was used for the preparation of biocomposites in combination with biopolymers and poly(ε-caprolactone) (PCL), by cryogelation technique, to yield biomimetic scaffolds with controlled interconnected macroporosity, mechanical stability, and predictable degradation behavior. The structural characteristics, swelling and degradation behavior of hydroxyapatite and hydroxyapatite/ß-tricalcium phosphate (ß-TCP) filled matrices were investigated as compared to the corresponding naked polymer 3D system. It was found that the homogeneity and cohesivity of the composite are significantly dependent on the size and amount of the included inorganic particles, which are thus determining the structural parameters. Surface modification with LPEI and nanodimensions favored the nHAp integration in the organic matrix, with preferential location along protein fibers, while ß-TCP microparticles induced an increased disorder in the hybrid system. The biocomposite including nHAp only was further investigated targeting biomedical uses, and proved to be non-cytotoxic and capable of acting as gene-activated matrix (GAM). It allowed sustained delivery over time (until 22days) of embedded PEI25-pDNA polyplexes at high levels of transgene expression, while insuring a decrease in cytotoxicity as compared to polyplexes alone. Experimental data recommend such biocomposite as an attractive material for regenerative medicine.


Subject(s)
Nanostructures , Biopolymers , Cryogels , Durapatite , Polyesters , Polyethyleneimine
10.
Int J Mol Sci ; 18(6)2017 Jun 17.
Article in English | MEDLINE | ID: mdl-28629130

ABSTRACT

The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(ʟ-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4.


Subject(s)
Biophysical Phenomena , DNA/chemistry , Oligonucleotides/chemistry , Polylysine/chemistry , Analysis of Variance , Genetic Therapy , Hydrogen-Ion Concentration , Models, Molecular , Molecular Dynamics Simulation , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...