Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361739

ABSTRACT

A non-surgical pharmacological approach to control cellular vitality and functionality during ischemic and/or reperfusion-induced phases of strokes remains extremely important. The synthesis of 2-ethyl-6-methyl-3-hydroxypyridinium gammalactone-2,3-dehydro-L-gulonate (3-EA) was performed using a topochemical reaction. The cell-protective effects of 3-EA were studied on a model of glutamate excitotoxicity (GluTox) and glucose-oxygen deprivation (OGD) in a culture of NMRI mice cortical cells. Ca2+ dynamics was studied using fluorescent bioimaging and a Fura-2 probe, cell viability was assessed using cytochemical staining with propidium iodide, and gene expression was assessed by a real-time polymerase chain reaction. The compound anti-ischemic efficacy in vivo was evaluated on a model of irreversible middle cerebral artery (MCA) occlusion in Sprague-Dawley male rats. Brain morphological changes and antioxidant capacity were assessed one week after the pathology onset. The severity of neurological disorder was evaluated dynamically. 3-EA suppressed cortical cell death in a dose-dependent manner under the excitotoxic effect of glutamate and ischemia/reoxygenation. Pre-incubation of cerebral cortex cells with 10-100 µM 3-EA led to significant stagnation in Ca2+ concentration in a cytosol ([Ca2+]i) of neurons and astrocytes suffering GluTox and OGD. Decreasing intracellular Ca2+ and establishing a lower [Ca2+]i baseline inhibited necrotic cell death in an acute experiment. The mechanism of 3-EA cytoprotective action involved changes in the baseline and ischemia/reoxygenation-induced expression of genes encoding anti-apoptotic proteins and proteins of the oxidative status; this led to inhibition of the late irreversible stages of apoptosis. Incubation of brain cortex cells with 3-EA induced an overexpression of the anti-apoptotic genes BCL-2, STAT3, and SOCS3, whereas the expression of genes regulating necrosis and inflammation (TRAIL, MLKL, Cas-1, Cas-3, IL-1ß and TNFa) were suppressed. 3-EA 18.0 mg/kg intravenous daily administration for 7 days following MCA occlusion preserved rats' cortex neuron population, decreased the severity of neurological deficit, and spared antioxidant capacity of damaged tissues. 3-EA demonstrated proven short-term anti-ischemic activity in vivo and in vitro, which can be associated with antioxidant activity and the ability to target necrotic and apoptotic death. The compound may be considered a potential neuroprotective molecule for further pre-clinical investigation.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Mice , Rats , Male , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Antioxidants/therapeutic use , Rats, Sprague-Dawley , Calcium , Cerebral Cortex/metabolism , Infarction, Middle Cerebral Artery , Necrosis , Glutamic Acid , Oxygen/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
2.
Biomolecules ; 11(6)2021 06 03.
Article in English | MEDLINE | ID: mdl-34205061

ABSTRACT

BACKGROUND: The main goal of our study was to explore the wound-healing property of a novel cerium-containing N-acethyl-6-aminohexanoate acid compound and determine key molecular targets of the compound mode of action in diabetic animals. METHODS: Cerium N-acetyl-6-aminohexanoate (laboratory name LHT-8-17) as a 10 mg/mL aquatic spray was used as wound experimental topical therapy. LHT-8-17 toxicity was assessed in human skin epidermal cell culture using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A linear wound was reproduced in 18 outbred white rats with streptozotocin-induced (60 mg/kg i.p.) diabetes; planar cutaneous defect was modelled in 60 C57Bl6 mice with streptozotocin-induced (200 mg/kg i.p.) diabetes and 90 diabetic db/db mice. Firmness of the forming scar was assessed mechanically. Skin defect covering was histologically evaluated on days 5, 10, 15, and 20. Tissue TNF-α, IL-1ß and IL-10 levels were determined by quantitative ELISA. Oxidative stress activity was detected by Fe-induced chemiluminescence. Ki-67 expression and CD34 cell positivity were assessed using immunohistochemistry. FGFR3 gene expression was detected by real-time PCR. LHT-8-17 anti-microbial potency was assessed in wound tissues contaminated by MRSA. RESULTS: LHT-8-17 4 mg twice daily accelerated linear and planar wound healing in animals with type 1 and type 2 diabetes. The formulated topical application depressed tissue TNF-α, IL-1ß, and oxidative reaction activity along with sustaining both the IL-10 concentration and antioxidant capacity. LHT-8-17 induced Ki-67 positivity of fibroblasts and pro-keratinocytes, upregulated FGFR3 gene expression, and increased tissue vascularization. The formulation possessed anti-microbial properties. CONCLUSIONS: The obtained results allow us to consider the formulation as a promising pharmacological agent for diabetic wound topical treatment.


Subject(s)
Aminocaproates/administration & dosage , Cerium/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Wound Healing/drug effects , Administration, Topical , Aminocaproates/metabolism , Animals , Cerium/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Wound Healing/physiology
3.
Adv Pharmacol Pharm Sci ; 2020: 3058735, 2020.
Article in English | MEDLINE | ID: mdl-32355910

ABSTRACT

BACKGROUND: To evaluate acute toxicity and local anaesthetic activity of a formulation containing a novel dimethylacetamide derivative, antioxidant, and vasoconstrictor in rats with chronic periodontitis. METHODS: Novel anaesthetic dimethylacetamide-containing formulation LHT-15-32 was studied as 2% water solution. Its acute intravenous and subcutaneous toxicity was determined in mice. Pain sensitivity threshold of the upper second molar was determined in rats with experimental periodontitis. Oxidative stress activity and total antioxidant capacity were determined in rats' gingival mucosa by induced chemiluminescence. Local changes were evaluated in periodontal tissue by morphological examination. Tissue IL-1ß, IL-10, and TNF-α concentration was quantitatively assessed by an enzyme-linked immunosorbent assay. LHT-15-31 Na-blocking activity was studied on isolated neurons of Limnaea stagnalis' parapharyngeal ganglion. Isolated sciatic nerve of Rana radibunda was perfused with different concentrations of LHT-15-32 to assess its conductivity. Statistical analysis was used, and continuous variables were presented as mean ± square deviation. The normality of distribution was determined using ANOVA. Newman-Keuls parametric criterion was used for intergroup comparison. LD50 indexes were calculated by probit analysis. RESULTS: LHT-15-32 acute intravenous and subcutaneous toxicity was lower than that of its active substance. The formulation by infraorbital administration induced deep dental anaesthesia which lasted over 70 min and activated the local antioxidant defense system and decreased IL-1ß level in gingival tissue. LHT-15-32 triggered tissue reparation around the impacted upper molar in rats assessed five days after administration. At 10-6 to 10-3 M concentration, LHT-15-32 inhibited sciatic nerve conductivity and blocked Na+ channels of isolated neurons in a dose-dependent manner. CONCLUSIONS: The formulation may be considered as an effective and safe approach to anaesthetize upper molars with periodontitis.

SELECTION OF CITATIONS
SEARCH DETAIL
...