Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 9(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348544

ABSTRACT

Antibacterial lysins are enzymes that hydrolyze bacterial peptidoglycan, which results in the rapid death of bacterial cells due to osmotic lysis. Lysostaphin is one of the most potent and well-studied lysins active against important nosocomial pathogen Staphylococcus aureus. Similarly to most other lysins, lysostaphin is composed of enzymatic and peptidoglycan-binding domains, and both domains influence its antibacterial activity. It is thus desirable to be able to study the activity of both domains independently. Lysostaphin cleaves pentaglycine cross-bridges within the staphylococcal peptidoglycan. Here, we report the protocol to study the catalytic activity of lysostaphin on the isolated pentaglycine peptide that is based on the chromogenic reaction of peptide amino groups with ninhydrin. Unlike previously reported assays, this protocol does not require in-house chemical synthesis or specialized equipment and can be readily performed in most laboratories. We demonstrate the use of this protocol to study the effect of EDTA treatment on the lysostaphin enzymatic activity. We further used this protocol to determine the catalytic efficiency of lysostaphin on the isolated pentaglycine and compared it to the apparent catalytic efficiency on the whole staphylococcal cells. These results highlight the relative impact of enzymatic and peptidoglycan-binding domains of lysostaphin on its bacteriolytic activity.

2.
Crit Rev Microbiol ; 46(6): 703-726, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32985279

ABSTRACT

The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Drug Resistance, Bacterial , Enzymes/pharmacology , Peptidoglycan/chemistry , Animals , Bacteria/metabolism , Bacteria/virology , Bacterial Infections/microbiology , Bacteriophages/enzymology , Bacteriophages/physiology , Humans , Peptidoglycan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...