Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000680

ABSTRACT

Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders, with a major involvement of oxidative stress in its onset and progression. Pioglitazone (Pio) is an antidiabetic drug that mainly works by reducing insulin resistance, while curcumin (Cur) is a powerful antioxidant with an important hypoglycemic effect. Both drugs are associated with several drawbacks, such as reduced bioavailability and a short half-life time (Pio), as well as instability and poor water solubility (Cur), which limit their therapeutic use. In order to overcome these disadvantages, new co-delivery (Pio and Cur) chitosan-based nanoparticles (CS-Pio-Cur NPs) were developed and compared with simple NPs (CS-Pio/CS-Cur NPs). The NPs were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In addition, the entrapment efficiency (EE) and loading capacity (LC), as well as the release profile, of the APIs (Pio and Cur) from the CS-APIs NPs in simulated fluids (SGF, SIF, and SCF) were also assessed. All the CS-APIs NPs presented a small particle size (PS) (211.6-337.4 nm), a proper polydispersity index (PI) (0.104 and 0.289), and a positive zeta potential (ZP) (21.83 mV-32.64 mV). Based on the TEM results, an amorphous state could be attributed to the CA-APIs NPs, and the TEM analysis showed a spherical shape with a nanometric size for the CS-Pio-Cur NPs. The FT-IR spectroscopy supported the successful loading of the APIs into the CS matrix and proved some interactions between the APIs and CS. The CS-Pio-Cur NPs presented increased or similar EE (85.76% ± 4.89 for Cur; 92.16% ± 3.79 for Pio) and LC% (23.40% ± 1.62 for Cur; 10.14% ± 0.98 for Pio) values in comparison with simple NPs, CS-Cur NPs (EE = 82.46% ± 1.74; LC = 22.31% ± 0.94), and CS-Pio NPs (EE = 93.67% ± 0.89; LC = 11.24% ± 0.17), respectively. Finally, based on the release profile results, it can be appreciated that the developed co-delivery nanosystem, CS-Pio-Cur NPs, assures a controlled and prolonged release of Pio and Cur from the polymer matrix along the GI tract.

2.
Pharmaceutics ; 15(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896252

ABSTRACT

Generally, NSAIDs are weakly soluble in water and contain both hydrophilic and hydrophobic groups. One of the most widely used NSAIDs is ibuprofen, which has a poor solubility and high permeability profile. By creating dynamic, non-covalent, water-soluble inclusion complexes, cyclodextrins (CDs) can increase the dissolution rate of low aqueous solubility drugs, operating as a drug delivery vehicle, additionally contributing significantly to the chemical stability of pharmaceuticals and to reducing drug-related irritability. In order to improve the pharmacological and pharmacokinetics profile of ibuprofen, new thiazolidin-4-one derivatives of ibuprofen (4b, 4g, 4k, 4m) were complexed with ß-CD, using co-precipitation and freeze-drying. The new ß-CD complexes (ß-CD-4b, ß-CD-4g, ß-CD-4k, ß-CD-4m) were characterized using scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction and a phase solubility test. Using the AutoDock-VINA algorithm included in YASARA-structure software, we investigated the binding conformation of ibuprofen derivatives to ß-CD and measured the binding energies. We also performed an in vivo biological evaluation of the ibuprofen derivatives and corresponding ß-CD complexes, using analgesic/anti-inflammatory assays, as well as a release profile. The results support the theory that ß-CD complexes (ß-CD-4b, ß-CD-4g, ß-CD-4k, ß-CD-4m) have a similar effect to ibuprofen derivatives (4b, 4g, 4k, 4m). Moreover, the ß-CD complexes demonstrated a delayed release profile, which provides valuable insights into the drug-delivery area, focused on ibuprofen derivatives.

3.
Pharmaceutics ; 13(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924046

ABSTRACT

In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized.

4.
BMC Pharmacol Toxicol ; 22(1): 10, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33541432

ABSTRACT

BACKGROUND: Aryl-propionic acid derivatives with ibuprofen as representative drug are very important for therapy, being recommended especially for anti-inflammatory and analgesic effects. On other hand 1,3-thiazolidine-4-one scaffold is an important heterocycle, which is associated with different biological effects such as anti-inflammatory and analgesic, antioxidant, antiviral, antiproliferative, antimicrobial etc. The present study aimed to evaluated the toxicity degree and the anti-inflammatory and analgesic effects of new 1,3-thiazolidine-4-one derivatives of ibuprofen. METHODS: For evaluation the toxicity degree, cell viability assay using MTT method and acute toxicity assay on rats were applied. The carrageenan-induced paw-edema in rat was used for evaluation of the anti-inflammatory effect while for analgesic effect the tail-flick test, as thermal nociception in rats and the writhing assay, as visceral pain in mice, were used. RESULTS: The toxicological screening, in terms of cytotoxicity and toxicity degree on mice, revealed that the ibuprofen derivatives (4a-n) are non-cytotoxic at 2 µg/ml. In addition, ibuprofen derivatives reduced carrageenan-induced paw edema in rats, for most of them the maximum effect was recorded at 4 h after administration which means they have medium action latency, similar to that of ibuprofen. Moreover, for compound 4d the effect was higher than that of ibuprofen, even after 24 h of administration. The analgesic effect evaluation highlighted that 4 h showed increased pain inhibition in reference to ibuprofen in thermal (tail-flick assay) and visceral (writhing assay) nociception models. CONCLUSIONS: The study revealed for ibuprofen derivatives, noted as 4 m, 4 k, 4e, 4d, a good anti-inflammatory and analgesic effect and also a safer profile compared with ibuprofen. These findings could suggest the promising potential use of them in the treatment of inflammatory pain conditions.


Subject(s)
Analgesics , Anti-Inflammatory Agents, Non-Steroidal , Edema/drug therapy , Ibuprofen , Pain/drug therapy , Thiazolidines , Acetic Acid , Analgesics/therapeutic use , Analgesics/toxicity , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Carrageenan , Cell Survival/drug effects , Edema/chemically induced , Hot Temperature/adverse effects , Ibuprofen/analogs & derivatives , Ibuprofen/therapeutic use , Ibuprofen/toxicity , Lethal Dose 50 , Mice , Pain/chemically induced , Rats, Wistar , Thiazolidines/therapeutic use , Thiazolidines/toxicity
5.
Materials (Basel) ; 12(4)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30781782

ABSTRACT

In the past many research studies have focused on the thiazolidine-4-one scaffold, due to the important biological effects associated with its heterocycle. This scaffold is present in the structure of many synthetic compounds, which showed significant biological effects such as antimicrobial, antifungal, antioxidant, anti-inflammatory, analgesic, antidiabetic effects. It was also identified in natural compounds, such as actithiazic acid, isolated from Streptomyces strains. Starting from this scaffold new xanthine derivatives have been synthetized and evaluated for their antibacterial and antifungal effects. The antibacterial action was investigated against Gram positive (Staphyloccoccus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922) bacterial strains. The antifungal potential was investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). In order to improve the antimicrobial activity, the most active xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) were included in a chitosan based polymeric matrix (CS). The developed polymeric systems (CS-XTDs) were characterized in terms of morphological (aspect, particle size), physic-chemical properties (swelling degree), antibacterial and antifungal activities, toxicity, and biological functions (bioactive compounds loading, entrapment efficiency). The presence of xanthine-thiazolidine-4-one derivatives into the chitosan matrix was confirmed using Fourier transform infrared (FT-IR) analysis. The size of developed polymeric systems, CS-XTDs, ranged between 614 µm and 855 µm, in a dry state. The XTDs were encapsulated into the chitosan matrix with very good loading efficiency, the highest entrapment efficiency being recorded for CS-6k, which ranged between 87.86 ± 1.25% and 93.91 ± 1.41%, depending of the concentration of 6k. The CS-XTDs systems showed an improved antimicrobial effect with respect to the corresponding XTDs. Good results were obtained for CS-6f, for which the effects on Staphylococcus aureus ATCC 25923 (21.2 ± 0.43 mm) and Sarcina lutea ATCC 9341 (25.1 ± 0.28 mm) were comparable with those of ciprofloxacin (25.1 ± 0.08 mm/25.0 ± 0.1 mm), which were used as the control. The CS-6f showed a notable antifungal effect, especially on Candida parapsilosis ATCC 22019 (18.4 ± 0.42 mm), the effect being comparable to those of nystatin (20.1 ± 0.09 mm), used as the control. Based on the obtained results these polymeric systems, consisting of thiazolidine-4-one derivatives loaded with chitosan microparticles, could have important applications in the food field as multifunctional (antimicrobial, antifungal, antioxidant) packaging materials.

6.
J Org Chem ; 82(24): 13700-13707, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29131628

ABSTRACT

This work reports the design of [1,3,4]thiadiazolo[3',2':1,2]imidazo[4,5-c]quinolines using a Pictet-Spengler reaction. The scope of the reaction was achieved from 6-(2-aminophenyl)imidazo[2,1-b][1,3,4]thiadiazole derivatives and available aldehydes. A wide range of aldehydes were employed to examine the scope of the cyclization. In parallel, a mechanism investigation was realized and showed a hydride transfer which led to a dismutation of the intermediate species. To complete this methodological study, a "sequential" oxidation/SNAr procedure was performed to achieve C-2 nucleophilic substitution using several amine types.

7.
Chem Cent J ; 11: 12, 2017.
Article in English | MEDLINE | ID: mdl-28203273

ABSTRACT

BACKGROUND: The xanthine structure has proved to be an important scaffold in the process of developing a wide variety of biologically active molecules such as bronchodilator, hypoglycemiant, anticancer and anti-inflammatory agents. It is known that hyperglycemia generates reactive oxygen species which are involved in the progression of diabetes mellitus and its complications. Therefore, the development of new compounds with antioxidant activity could be an important therapeutic strategy against this metabolic syndrome. RESULTS: New thiazolidine-4-one derivatives with xanthine structure have been synthetized as potential antidiabetic drugs. The structure of the synthesized compounds was confirmed by using spectral methods (FT-IR, 1H-NMR, 13C-NMR, 19F-NMR, HRMS). Their antioxidant activity was evaluated using in vitro assays: DPPH and ABTS radical scavenging ability and phosphomolybdenum reducing antioxidant power assay. The developed compounds showed improved antioxidant effects in comparison to the parent compound, theophylline. In the case of both series, the intermediate (5a-k) and final compounds (6a-k), the aromatic substitution, especially in para position with halogens (fluoro, chloro), methyl and methoxy groups, was associated with an increase of the antioxidant effects. CONCLUSIONS: For several thiazolidine-4-one derivatives the antioxidant effect of was superior to that of their corresponding hydrazone derivatives. The most active compound was 6f which registered the highest radical scavenging activity.Graphical abstractDesign and synthesis of new thiazolidine-4-one derivatives.

8.
Chem Cent J ; 10: 6, 2016.
Article in English | MEDLINE | ID: mdl-26855668

ABSTRACT

BACKGROUND: l-Arginine is a semi-essential aminoacid with important role in regulation of physiological processes in humans. It serves as precursor for the synthesis of proteins and is also substrate for different enzymes such as nitric oxide synthase. This amino-acid act as free radical scavenger, inhibits the activity of pro-oxidant enzymes and thus acts as an antioxidant and has also bactericidal effect against a broad spectrum of bacteria. RESULTS: New thiazolidine-4-one derivatives of nitro-l-arginine methyl ester (NO2-Arg-OMe) have been synthesized and biologically evaluated in terms of antioxidant and antibacterial/antifungal activity. The structures of the synthesized compounds were confirmed by (1)H, (13)C NMR, Mass and IR spectral data. The antioxidant potential was investigated using in vitro methods based on ferric/phosphomolybdenum reducing antioxidant power and DPPH/ABTS radical scavenging assay. The antibacterial effect was investigated against Gram positive (Staphylococcus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacterial strains. The antifungal activity was also investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). CONCLUSIONS: Synthesized compounds showed a good antioxidant activity in comparison with the NO2-Arg-OMe. The antimicrobial results support the selectivity of tested compounds especially on P. aeruginosa as bacterial strain and C. parapsilosis as fungal strain. The most proper compounds were 6g (R = 3-OCH3) and 6h (R = 2-OCH3) which showed a high free radical (DPPH, ABTS) scavenging ability and 6j (R = 2-NO2) that was the most active on both bacterial and fungal strains and also it showed the highest ABTS radical scavenging ability.Graphical abstract1: ethyl 3-aminopropionate hydrochloride, 2a-j: aromatic aldehydes, 3: thioglycolic acid, 4a-j: thiazolidine-propionic acid derivatives , 5: Nω-nitro-L-arginine methyl ester hydrochloride, 6a-j: thiazolidine-propionyl-nitro-L-arginine methyl ester derivatives.

9.
Molecules ; 19(9): 13824-47, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25255761

ABSTRACT

New thiazolidine-4-one derivatives based on the 4-aminophenazone (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) scaffold have been synthesized as potential anti-inflammatory drugs. The pyrazoline derivatives are known especially for their antipyretic, analgesic and anti-inflammatory effects, but recently there were synthesized new compounds with important antioxidant, antiproliferative, anticancer and antidiabetic activities. The beneficial effects of these compounds are explained by nonselective inhibition of cyclooxygenase izoenzymes, but also by their potential scavenging ability for reactive oxygen and nitrogen species. The structure of the new compounds was proved using spectroscopic methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the ferric reducing antioxidant power, phosphomolydenum reducing antioxidant power, DPPH and ABTS radical scavenging assays. The chemical modulation of 4-aminophenazone (6) through linkage to thiazolidine-propanoic acid derivatives 5a-l led to improved antioxidant potential, all derivatives 7a-l being more active than phenazone. The most active compounds are the derivatives 7e, and 7k, which showed the higher antioxidant effect depending on the antioxidant assay considered.


Subject(s)
Drug Design , Drug Evaluation, Preclinical , Pyrazoles/chemistry , Thiazolidines/chemistry , Thiazolidines/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Magnetic Resonance Spectroscopy , Thiazolidines/chemical synthesis
10.
Molecules ; 19(9): 15005-25, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25237755

ABSTRACT

New thiazolidine-4-one derivatives of 2-(4-isobutylphenyl)propionic acid (ibuprofen) have been synthesized as potential anti-inflammatory drugs. The structure of the new compounds was proved using spectral methods (FR-IR, 1H-NMR, 13C-NMR, MS). The in vitro antioxidant potential of the synthesized compounds was evaluated according to the total antioxidant activity, the DPPH and ABTS radical scavenging assays. Reactive oxygen species (ROS) and free radicals are considered to be involved in many pathological events like diabetes mellitus, neurodegenerative diseases, cancer, infections and more recently, in inflammation. It is known that overproduction of free radicals may initiate and amplify the inflammatory process via upregulation of genes involved in the production of proinflammatory cytokines and adhesion molecules. The chemical modulation of acyl hydrazones of ibuprofen 3a-l through cyclization to the corresponding thiazolidine-4-ones 4a-n led to increased antioxidant potential, as all thiazolidine-4-ones were more active than their parent acyl hydrazones and also ibuprofen. The most active compounds are the thiazolidine-4-ones 4e, m, which showed the highest DPPH radical scavenging ability, their activity being comparable with vitamin E.


Subject(s)
Propionates/chemical synthesis , Propionates/pharmacology , Antioxidants/pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Propionates/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...