Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(1): 506-514, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38109362

ABSTRACT

Manipulation of magnetic dipole emission with resonant photonic nanostructures is of great interest for both fundamental research and applications. However, obtaining selective control over the emission properties of magnetic dipole transitions is challenging, as they usually occur within a manifold of spectrally close emission lines associated with different spin states of the involved electronic levels. Here we demonstrate spectrally selective directional tailoring of magnetic dipole emission using designed photonic nanostructures featuring a high quality factor. Specifically, we employ a hybrid nanoscale optical system consisting of a Eu3+ compound coupled to a designed broken-symmetry TiO2 metasurface to demonstrate directional color routing of the compound's emission through its distinct electric and magnetic-dominated electronic transition channels. Using low numerical aperture collection optics, we achieve a fluorescence signal enhancement of up to 33.13 for the magnetic-dominated dipole transition at 590 nm when it spectrally overlaps with a spectrally narrow resonance of the metasurface. This makes the, usually weak, magnetic dipole transition the most intense spectral line in our recorded fluorescence spectra. By studying the directional emission properties for the coupled system using Fourier imaging and time-resolved fluorescence measurements, we demonstrate that the high-quality-factor modes in the metasurface enable free-space light routing, where forward-directed emission is established for the magnetic-dominated dipole transition, whereas the light emitted via the electric dipole transition is mainly directed sideways. Our results underpin the importance of magnetic light-matter interactions as an additional degree of freedom in photonic and optoelectronic systems. Moreover, they facilitate the development of spectrometer-free and highly integrated nanophotonic imaging, sensing, and probing devices.

2.
Opt Express ; 29(4): 5567-5579, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726091

ABSTRACT

Optical metasurfaces were suggested as a route for engineering advanced light sources with tailored emission properties. In particular, they provide a control over the emission directionality, which is essential for single-photon sources and LED applications. Here, we experimentally study light emission from a metasurface composed of III-V semiconductor Mie-resonant nanocylinders with integrated quantum dots (QDs). Specifically, we focus on the manipulation of the directionality of spontaneous emission from the QDs due to excitation of different magnetic quadrupole resonances in the nanocylinders. To this end, we perform both back focal plane imaging and momentum-resolved spectroscopy measurements of the emission. This allows for a comprehensive analysis of the effect of the different resonant nanocylinder modes on the emission characteristics of the metasurface. Our results show that the emission directionality can be manipulated by an interplay of the excited quadrupolar nanocylinder modes with the metasurface lattice modes and provide important insights for the design of novel smart light sources and new display concepts.

4.
Nano Lett ; 20(12): 8608-8614, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33180501

ABSTRACT

Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics.

5.
Nano Lett ; 19(2): 1015-1022, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30605616

ABSTRACT

Mie-resonant high-index dielectric nanoparticles and metasurfaces have been suggested as a viable platform for enhancing both electric and magnetic dipole transitions of fluorescent emitters. While the enhancement of the electric dipole transitions by such dielectric nanoparticles has been demonstrated experimentally, the case of magnetic-dipole transitions remains largely unexplored. Here, we study the enhancement of spontaneous emission of Eu3+ ions, featuring both electric and magnetic-dominated dipole transitions, by dielectric metasurfaces composed of Mie-resonant silicon nanocylinders. By coating the metasurfaces with a layer of an Eu3+ doped polymer, we observe an enhancement of the Eu3+ emission associated with the electric (at 610 nm) and magnetic-dominated (at 590 nm) dipole transitions. The enhancement factor depends systematically on the spectral proximity of the atomic transitions to the Mie resonances as well as their multipolar order, both controlled by the nanocylinder size. Importantly, the branching ratio of emission via the electric or magnetic transition channel can be modified by carefully designing the metasurface, where the magnetic dipole transition is enhanced more than the electric transition for cylinders with radii of about 130 nm. We confirm our observations by numerical simulations based on the reciprocity principle. Our results open new opportunities for bright nanoscale light sources based on magnetic transitions.

6.
Nano Lett ; 18(11): 6906-6914, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30339762

ABSTRACT

Light-emitting sources and devices permeate every aspect of our lives and are used in lighting, communications, transportation, computing, and medicine. Advances in multifunctional and "smart lighting" would require revolutionary concepts in the control of emission spectra and directionality. Such control might be possible with new schemes and regimes of light-matter interaction paired with developments in light-emitting materials. Here we show that all-dielectric metasurfaces made from III-V semiconductors with embedded emitters have the potential to provide revolutionary lighting concepts and devices, with new functionality that goes far beyond what is available in existing technologies. Specifically, we use Mie-resonant metasurfaces made from semiconductor heterostructures containing epitaxial quantum dots. By controlling the symmetry of the resonant modes, their overlap with the emission spectra, and other structural parameters, we can enhance the brightness by 2 orders of magnitude, as well as reduce its far-field divergence significantly.

7.
Nat Commun ; 9(1): 2507, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29955051

ABSTRACT

A frequency mixer is a nonlinear device that combines electromagnetic waves to create waves at new frequencies. Mixers are ubiquitous components in modern radio-frequency technology and microwave signal processing. The development of versatile frequency mixers for optical frequencies remains challenging: such devices generally rely on weak nonlinear optical processes and, thus, must satisfy phase-matching conditions. Here we utilize a GaAs-based dielectric metasurface to demonstrate an optical frequency mixer that concurrently generates eleven new frequencies spanning the ultraviolet to near-infrared. The even and odd order nonlinearities of GaAs enable our observation of second-harmonic, third-harmonic, and fourth-harmonic generation, sum-frequency generation, two-photon absorption-induced photoluminescence, four-wave mixing and six-wave mixing. The simultaneous occurrence of these seven nonlinear processes is assisted by the combined effects of strong intrinsic material nonlinearities, enhanced electromagnetic fields, and relaxed phase-matching requirements. Such ultracompact optical mixers may enable a plethora of applications in biology, chemistry, sensing, communications, and quantum optics.

8.
Nano Lett ; 17(7): 4297-4303, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28590748

ABSTRACT

Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.

9.
Nat Commun ; 8(1): 17, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28500308

ABSTRACT

Optical metasurfaces are regular quasi-planar nanopatterns that can apply diverse spatial and spectral transformations to light waves. However, metasurfaces are no longer adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. We experimentally realise an ultrafast tunable metasurface consisting of subwavelength gallium arsenide nanoparticles supporting Mie-type resonances in the near infrared. Using transient reflectance spectroscopy, we demonstrate a picosecond-scale absolute reflectance modulation of up to 0.35 at the magnetic dipole resonance of the metasurfaces and a spectral shift of the resonance by 30 nm, both achieved at unprecedentedly low pump fluences of less than 400 µJ cm-2. Our findings thereby enable a versatile tool for ultrafast and efficient control of light using light.Metasurfaces are not adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. Here, Shcherbakov et al. realise an ultrafast tunable metasurface with picosecond-scale large absolute reflectance modulation at low pump fluences.

10.
Opt Express ; 24(7): 7133-50, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27137006

ABSTRACT

New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5'-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial.

SELECTION OF CITATIONS
SEARCH DETAIL
...