Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 90(9): 2261-2273, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26438400

ABSTRACT

Neutrophils infiltrate tissues during inflammation, and when activated, they release ß-glucuronidase. Since inflammation is associated with carcinogenesis, we investigated how extracellular ß-glucuronidase changed the in vitro cellular response to the chemical carcinogen benzo(a)pyrene (B[a]P). For this we exposed human liver (HepG2) and lung (A549) cells to B[a]P in the presence or absence of ß-glucuronidase. ß-Glucuronidase reduced B[a]P-induced expression of CYP1A1 and CYP1B1 at 6 h after exposure, which did not depend on ß-glucuronidase activity, because the inhibitor D-saccharic acid 1,4-lactone monohydrate did not antagonize the effect of ß-glucuronidase. On the other hand, the inhibitory effect of ß-glucuronidase on CYP expression was dependent on signalling via the insulin-like growth factor receptor (IGF2R, a known receptor for ß-glucuronidase), because co-incubation with the IGF2R inhibitor mannose-6-phosphate completely abolished the effect of ß-glucuronidase. Extracellular ß-glucuronidase also reduced the formation of several B[a]P metabolites and B[a]P-DNA adducts. Interestingly, at 24 h of exposure, ß-glucuronidase significantly enhanced CYP expression, probably because ß-glucuronidase de-glucuronidated B[a]P metabolites, which continued to trigger the aryl hydrocarbon receptor (Ah receptor) and induced expression of CYP1A1 (in both cell lines) and CYP1B1 (in A549 only). Consequently, significantly higher concentrations of B[a]P metabolites and DNA adducts were found in ß-glucuronidase-treated cells at 24 h. DNA adduct levels peaked at 48 h in cells that were exposed to B[a]P and treated with ß-glucuronidase. Overall, these data show that ß-glucuronidase alters the cellular response to B[a]P and ultimately enhances B[a]P-induced DNA adduct levels.


Subject(s)
Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Glucuronidase/pharmacology , Hepatocytes/drug effects , Lung/drug effects , Pneumonia/enzymology , Animals , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/metabolism , Benzo(a)pyrene/metabolism , Biotransformation , Carcinogens/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , DNA Adducts/metabolism , Disease Models, Animal , Hep G2 Cells , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Lipopolysaccharides , Lung/enzymology , Lung/pathology , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/pathology , Receptor, IGF Type 2/agonists , Receptor, IGF Type 2/metabolism , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...