Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 99: 53-9, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26551598

ABSTRACT

Arginase-2 counteracts endothelial nitric oxide synthase (eNOS) activity in human endothelium, and its expression is negatively controlled by histone deacetylase (HDAC2). Conversely NO inhibits HDAC and previous studies suggest that arginase-2 is up-regulated by NO. We studied whether NO regulates arginase-2 expression in umbilical artery endothelial cells (HUAEC) increasing ARG2 promoter accessibility. HUAEC exposed to NOC-18 (NO donor, 1-100 µM, 0-24 h) showed an increase in arginase-2 but a decrease in eNOS mRNA levels in a time-dependent manner, with a maximal effect at 100 µM (24 h). Conversely NOS inhibition with L-NAME (100 µM) reduced arginase-2 mRNA and protein levels, an effect reverted by co-incubation with NOC-18. Treatment with TSA paralleled the effects of NO on arginase-2 and eNOS at mRNA and protein levels, with maximal effect at 10 µM. Co-incubation of NOC-18 (100 µM) with a sub-maximal concentration of TSA (1 µM) potentiated the increase in arginase-2 mRNA levels, whilst L-NAME prevented TSA-dependent arginase-2 induction. The effects on arginase-2 mRNA were paralleled by changes in chromatin accessibility, as well as increased levels of H3K9 and H4K12 acetylation, at ARG2 proximal (-579 to -367 and -280 to -73 bp from TSS) and core (-121 to +126 bp from TSS) promoter. Finally NO-dependent arginase-2 induction was prevented by pre-incubation for 10 min with the cysteine blocker MMTS (10 mM). These data showed for the first time that NO up-regulates arginase-2 expression in primary cultured human endothelial cells by an epigenetic-mediated mechanism increasing ARG2 promoter accessibility suggesting a negative regulatory loop for eNOS activity.


Subject(s)
Arginase/biosynthesis , Endothelial Cells/metabolism , Histone Deacetylase Inhibitors/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Umbilical Arteries/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , NG-Nitroarginine Methyl Ester/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Umbilical Arteries/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...