Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37050229

ABSTRACT

Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.

2.
Eur J Pharm Biopharm ; 187: 96-106, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37094693

ABSTRACT

Raw starch microparticles (SMPs) proved efficient antigen carriers with adjuvant properties when administered via the mucosal route; however, the underlying mechanisms associated with this bioactivity are unknown. In the present study, we explored the mucoadhesion properties, fate, and toxicity of starch microparticles after mucosal administration. Nasally administered microparticles were mainly retained in nasal turbinates, reaching the nasal-associated lymphoid tissue; this step is facilitated by the ability of the microparticles to penetrate through the mucous epithelium. Likewise, we found intraduodenally administered SMPs on the small intestinal villi, follicle-associated epithelium, and Peyer's patches. Furthermore, under simulated gastric and intestinal pH conditions, we detected mucoadhesion between the SMPs and mucins, regardless of microparticle swelling. SMPs' mucoadhesion and translocation to mucosal immune responses induction sites explain the previously reported role of these microparticles as vaccine adjuvants and immunostimulants.


Subject(s)
Immunization , Starch , Starch/chemistry , Adjuvants, Immunologic , Immunity, Mucosal , Administration, Mucosal
3.
Pharm Res ; 39(8): 1823-1849, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35739369

ABSTRACT

A robust comprehension of phagocytosis is crucial for understanding its importance in innate immunity. A detailed description of the molecular mechanisms that lead to the uptake and clearance of endogenous and exogenous particles has helped elucidate the role of phagocytosis in health and infectious or autoimmune diseases. Furthermore, knowledge about this cellular process is important for the rational design and development of particulate systems for the administration of vaccines or therapeutics. Depending on these specific applications and the required biological responses, particles must be designed to encourage or avoid their phagocytosis and prolong their circulation time. Functionalization with specific polymers or ligands and changes in the size, shape, or surface of particles have important effects on their recognition and internalization by professional and nonprofessional phagocytes and have a major influence on their fate and safety. Here, we review the phagocytosis of particles intended to be used as carrier or delivery systems for vaccines or therapeutics, the cells involved in this process depending on the route of administration, and the strategies employed to obtain the most desirable particles for each application through the manipulation of their physicochemical characteristics. We also offer a view of the challenges and potential opportunities in the field and give some recommendations that we expect will enable the development of improved approaches for the rational design of these systems.


Subject(s)
Communicable Diseases , Vaccines , Humans , Immunity, Innate , Phagocytosis , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...