Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 13525, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941193

ABSTRACT

The Central Andes of Peru are a region of great concern regarding pesticide risk to the health of local communities. Therefore, we conducted an observational study to assess the level of pesticide contamination among Andean people. Analytical chemistry methods were used to measure the concentrations of 170 pesticide-related compounds in hair samples from 50 adult Andean subjects living in rural and urban areas. As part of the study, a questionnaire was administered to the subjects to collect information regarding factors that increase the risk of pesticide exposure. Our results indicate that Andean people are strongly exposed to agrochemicals, being contaminated with a wide array of pesticide-related compounds at high concentration levels. Multivariate analyses and geostatistical modeling identified sociodemographic factors associated with rurality and food origin that increase pesticide exposure risk. The present study represents the first comprehensive investigation of pesticide-related compounds detected in body samples collected from people living in the Central Andes of Peru. Our findings pinpoint an alarming environmental situation that threatens human health in the region and provide a rationale for improving public policies to protect local communities.


Subject(s)
Pesticides , Adult , Agrochemicals/analysis , Environmental Exposure/analysis , Humans , Peru , Pesticides/analysis
2.
Plants (Basel) ; 11(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35448739

ABSTRACT

We explored the concentration patterns of the bioactive metabolite plumericin produced by Himatanthus tarapotensis (Apocynaceae) under different edaphic conditions and variations in rainfall intensity, as well as its potential role in the chemical defense against insect herbivores. Values of plumericin concentration from leaves were obtained by High-Performance Liquid Chromatography, and evaluated as a function of differences in soil types, variation of precipitation, and variation of the abundance of insect herbivores, using first a Repeated Measures Correlation (rmcorr) and then a Generalized Linear Mixed Model (GLMM) analysis. Plumericin concentration is highly variable among plants, but with a significantly higher concentration in plants growing on clay soil compared to that of the white-sand soil habitat (p < 0.001). Plumericin concentration is not affected by precipitation. The caterpillar of Isognathus leachii (Lepidoptera: Sphingidae) is the most conspicuous herbivore of H. tarapotensis, and its presence is continuous but not related to plumericin concentration, probably because of its capacity to elude the chemical defense of this plant. Nevertheless, our multivariate model revealed that plumericin concentration is related to the abundance of Hymenoptera (Formicidae), and this relationship is significantly influenced by the soil parameters of carbon percentage, clay percentage, and phosphorous percentage (p < 0.001). Plumericin is a mediating agent in the interaction between H. tarapotensis and its natural environment. Variation in plumericin concentration would be induced by the abundance of Hymenoptera (Formicidae), probably as a chemical response against these insects, and by differences in soil nutrient availability.

3.
J Ethnopharmacol ; 280: 114473, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34343650

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fungal and bacterial infections remain a major problem worldwide, requiring the development of effective therapeutic strategies. Solanum mammosum L. (Solanaceae) ("teta de vaca") is used in traditional medicine in Peru to treat fungal infections and respiratory disorders via topical application. However, the mechanism of action remains unknown, particularly in light of its chemical composition. MATERIALS AND METHODS: The antifungal activity of TDV was determined against Trichophyton mentagrophytes and Candida albicans using bioautography-TLC-HRMS to rapidly identify the active compounds. Then, the minimum inhibitory concentration (MIC) of the fruit crude extract and the active compound was determined to precisely evaluate the antifungal activity. Additionally, the effects of the most active compound on the formation of Pseudomonas aeruginosa biofilms and pyocyanin production were evaluated. Finally, a LC-HRMS profile and a molecular network of TDV extract were created to characterize the metabolites in the fruits' ethanolic extract. RESULTS: Bioautography-TLC-HRMS followed by isolation and confirmation of the structure of the active compound by 1D and 2D NMR allowed the identification solamargine as the main compound responsible for the anti-Trichophyton mentagrophytes (MIC = 64 µg mL-1) and anti-Candida albicans (MIC = 64 µg mL-1) activities. In addition, solamargine led to a significant reduction of about 20% of the Pseudomonas aeruginosa biofilm formation. This effect was observed at a very low concentration (1.6 µg mL-1) and remained fairly consistent regardless of the concentration. In addition, solamargine reduced pyocyanin production by about 20% at concentrations of 12.5 and 50 µg mL-1. Furthermore, the LC-HRMS profiling of TDV allowed us to annotate seven known compounds that were analyzed through a molecular network. CONCLUSIONS: Solamargine has been shown to be the most active compound against T. mentoagrophytes and C. albicans in vitro. In addition, our data show that this compound affects significantly P. aeruginosa pyocyanin production and biofilm formation in our conditions. Altogether, these results might explain the traditional use of S. mammosum fruits to treat a variety of fungal infections and respiratory disorders.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Solanaceous Alkaloids/pharmacology , Solanum/chemistry , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Arthrodermataceae/drug effects , Biofilms/drug effects , Candida albicans/drug effects , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Pyocyanine/metabolism , Solanaceous Alkaloids/isolation & purification
4.
Toxins (Basel) ; 13(2)2021 02 23.
Article in English | MEDLINE | ID: mdl-33672426

ABSTRACT

Consumption of cereals contaminated by mycotoxins poses health risks. For instance, Fumonisins B, mainly produced by Fusarium verticillioides and Fusariumproliferatum, and the type B trichothecene deoxynivalenol, typically produced by Fusarium graminearum, are highly prevalent on cereal grains that are staples of many cultural diets and known to represent a toxic risk hazard. In Peru, corn and other cereals are frequently consumed on a daily basis under various forms, the majority of food grains being sold through traditional markets for direct consumption. Here, we surveyed mycotoxin contents of market-bought grain samples in order to assess the threat these mycotoxins might represent to Peruvian population, with a focus on corn. We found that nearly one sample of Peruvian corn out of six was contaminated with very high levels of Fumonisins, levels mostly ascribed to the presence of F. verticillioides. Extensive profiling of Peruvian corn kernels for fungal contaminants could provide elements to refine the potential risk associated with Fusarium toxins and help define adapted food safety standards.


Subject(s)
Dietary Exposure/adverse effects , Edible Grain/microbiology , Food Microbiology , Fusarium/metabolism , Mycotoxins/adverse effects , Mycotoxins/analysis , Zea mays/microbiology , Commerce , Consumer Product Safety , Food Supply , Humans , Peru , Risk Assessment
5.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32818574

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Subject(s)
Antiprotozoal Agents/metabolism , Ethnopharmacology/methods , Medicine, Traditional/methods , Metabolomics/methods , Piper/metabolism , Plant Extracts/metabolism , Animals , Antimalarials/isolation & purification , Antimalarials/metabolism , Antimalarials/therapeutic use , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/therapeutic use , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Leishmania donovani/drug effects , Leishmania donovani/metabolism , Mesocricetus , Mice , Peru/ethnology , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , RAW 264.7 Cells , Surveys and Questionnaires
6.
J Ethnopharmacol ; 210: 372-385, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-28887215

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon, the use of medicinal plants is a common practice. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point for this work was a set of interviews of people living in rural communities from the Peruvian Amazon about their uses of plants. Protozoan diseases are a public health issue in the Amazonian communities, who partly cope with it by using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help identify new antiprotozoal compounds. AIMS OF STUDY: to inventory and validate the use of medicinal plants by rural people of Loreto region. MATERIALS AND METHODS: Rural mestizos were interviewed about traditional medication of parasite infections with medicinal plants. Ethnopharmacological surveys were undertaken in two villages along Iquitos-Nauta road (Loreto region, Peru), namely 13 de Febrero and El Dorado communities. Forty-six plants were collected according to their traditional use for the treatment of parasitic diseases, 50 ethanolic extracts (different parts for some of the plants) were tested in vitro on Plasmodium falciparum (3D7 sensitive strain and W2 chloroquine resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Cytotoxic assessment (HUVEC cells) of the active extracts was performed. Two of the most active plants were submitted to preliminary bioguided fractionation to ascertain and explore their activities. RESULTS: From the initial plants list, 10 were found to be active on P. falciparum, 15 on L. donovani and 2 on the three parasites. The ethanolic extract from Costus curvibracteatus (Costaceae) leaves and Grias neuberthii (Lecythidaceae) bark showed strong in vitro activity on P. falciparum (sensitive and resistant strain) and L. donovani and moderate activity on T. brucei gambiense. CONCLUSIONS: The Amazonian forest communities in Peru represents a source of knowledge on the use of medicinal plants. In this work, several extracts with antiprotozoal activity were identified. This work contributes to validate some traditional uses and opens subsequent investigations on active compounds isolation and identification.


Subject(s)
Antiprotozoal Agents/pharmacology , Medicine, Traditional/methods , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Antiprotozoal Agents/isolation & purification , Cricetinae , Ethnopharmacology , Female , Human Umbilical Vein Endothelial Cells , Humans , Leishmania donovani/drug effects , Parasitic Sensitivity Tests , Peru , Plant Extracts/isolation & purification , Plasmodium falciparum/drug effects , Protozoan Infections/drug therapy , Protozoan Infections/parasitology , Rural Population , Surveys and Questionnaires , Trypanosoma brucei gambiense/drug effects
7.
Nat Prod Res ; 31(2): 138-142, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27561759

ABSTRACT

One new phthalide (1) was isolated from aerial parts of Peperomia nivalis, along with known compounds (2 and 3), reported in this species for the first time. The structure of the new compound was characterised on the basis of 1D (1H and 13C NMR), 2D (COSY, HMQC, HMBC and NOESY) NMR and high-resolution mass spectral (HRMS) data. Compound 2 was isolated from a natural source for the first time but previously synthesised. Compounds 1-3 were evaluated for their anti-Helicobacter pylori and anti-Plasmodium falciparum activities. Compound 1 showed moderate activities against H. pylori (MIC 47.5 µM) and the F32-Tanzania strain of P. falciparum (IC50 8.5 µM). Compounds 2 and 3 exhibited weak anti-H. pylori activity (MIC 241.3 and 237.6 µM, respectively) and were inactive against P. falciparum.


Subject(s)
Benzofurans/chemistry , Benzofurans/pharmacology , Peperomia/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Helicobacter pylori/drug effects , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Peru , Plasmodium falciparum/drug effects , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL