Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(7): e0197220, 2018.
Article in English | MEDLINE | ID: mdl-30011281

ABSTRACT

Mercury and methylmercury were measured in seawater and biota collected from the outer Bay of Fundy to better document mercury bioaccumulation in a temperate marine food web. The size of an organism, together with δ13 C and δ15 N isotopes, were measured to interpret mercury levels in biota ranging in size from microplankton (25µm) to swordfish, dolphins and whales. Levels of mercury in seawater were no different with depth and not elevated relative to upstream sources. The δ13 C values of primary producers were found to be inadequate to specify the original energy source of various faunas, however, there was no reason to separate the food web into benthic, demersal and pelagic food chains because phytoplankton has been documented to almost exclusively fuel the ecosystem. The apparent abrupt increase in mercury content from "seawater" to phytoplankton, on a wet weight basis, can be explained from an environmental volume basis by the exponential increase in surface area of smaller particles included in "seawater" determinations. This physical sorption process may be important up to the macroplankton size category dominated by copepods according to the calculated biomagnification factors (BMF). The rapid increase in methylmercury concentration, relative to the total mercury, between the predominantly phytoplankton (<125µm) and the zooplankton categories is likely augmented by gut microbe methylation. Further up the food chain, trophic transfer of methylmercury dominates resulting in biomagnification factors greater than 10 in swordfish, Atlantic bluefin tuna, harbour porpoise, Atlantic white-sided dolphin and common thresher shark. The biomagnification power of the northern Gulf of Maine ecosystem is remarkably similar to that measured in tropical, subtropical, other temperate and arctic oceanic ecozones.


Subject(s)
Dolphins/metabolism , Fishes/metabolism , Methylmercury Compounds/analysis , Phytoplankton/chemistry , Whales/metabolism , Zooplankton/chemistry , Animals , Aquatic Organisms , Atlantic Ocean , Biota/physiology , Carbon Isotopes , Food Chain , Maine , Mercury/analysis , Methylmercury Compounds/metabolism , Nitrogen Isotopes , Nova Scotia , Phytoplankton/metabolism , Seawater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Zooplankton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...