Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 210(9): 1839-54, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23918956

ABSTRACT

The small intestine epithelium (SI-Ep) harbors millions of unconventional (γδ and CD4(-) CD8(-) NK1.1(-) TCRαß) and conventional (CD8αß and CD4) T cells, designated intraepithelial lymphocytes (IELs). Here, we identified the circulating pool of SI-Ep-tropic T cells and studied their capacity to colonize the SI-Ep under steady-state conditions in SPF mice. Developmentally regulated levels of α4ß7 endowed recent thymic emigrants (RTEs) of unconventional types with higher SI-Ep tropism than their conventional homologues. SI-Ep-tropic RTEs, which in all lineages emerged naive, homed to the SI-Ep, but this environment was inadequate to stimulate them to cycle. In contrast, conventional and, unexpectedly, unconventional T cells, particularly Vγ7(+) (hallmark of γδ IELs), previously stimulated to cycle in the gut-associated lymphoid tissue (GALT), proliferated in the SI-Ep. Cycling unconventional SI-Ep immigrants divided far more efficiently than their conventional homologues, thereby becoming predominant. This difference impacted on acquisition of high Granzyme B content, which required extensive proliferation. In conclusion, SI-Ep-tropic T cells follow a thymus-SI-Ep or a GALT-SI-Ep pathway, the latter generating highly competitive immigrants that are the sole precursors of cytotoxic IELs. These events occur continuously as part of the normal IEL dynamics.


Subject(s)
Cell Lineage/immunology , Cell Movement/immunology , Epithelium/immunology , Intestine, Small/cytology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Cell Division , Cell Proliferation , Epithelial Cells/cytology , Epithelial Cells/immunology , Granzymes/metabolism , Integrins/metabolism , Lymphoid Tissue/cytology , Mice , Mice, Inbred C57BL , Phenotype , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, CCR/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , Thoracic Duct/cytology , Thymocytes/cytology , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/growth & development
3.
J Exp Med ; 197(3): 333-41, 2003 Feb 03.
Article in English | MEDLINE | ID: mdl-12566417

ABSTRACT

In the absence of thymopoiesis, T lymphocytes are nevertheless present, mainly in the gut epithelium. Ontogeny of the extrathymic pathway and the extent of its involvement in euthymic mice are controversial. These questions have been addressed by assessing the expression of recombinase activating gene (RAG) through the use of green fluorescent protein RAG2 transgenic mouse models. In athymic mice, T lymphopoiesis occurs mainly in the mesenteric lymph node and less in the Peyer's patches. Ontogenic steps of this lymphopoiesis resemble those of thymopoiesis, but with an apparent bias toward gamma delta T cell production and with a paucity of oligoclonal alpha beta T cells possibly resulting from a deficit in positive selection. Whether in athymic or euthymic mice, neither T intraepithelial lymphocytes (IEL) nor cryptopatch cells (reported to contain precursors of IEL) displayed fluorescence indicating recent RAG protein synthesis. Newly made T cells migrate from the mesenteric node into the thoracic duct lymph to reach the gut mucosa. In euthymic mice, this extrathymic pathway is totally repressed, except in conditions of severe lymphocytic depletion. Thus, in normal animals, all gut T IEL, including CD8 alpha alpha(+) cells, are of thymic origin, CD8 alpha alpha(+) TCR alpha beta(+) IEL being the likely progeny of double negative NK1-1(-) thymocytes, which show polyclonal V alpha and V beta repertoires.


Subject(s)
Lymphopoiesis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Genes, RAG-1 , Green Fluorescent Proteins , Luminescent Proteins/genetics , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphocyte Depletion , Mice , Mice, Knockout , Mice, Nude , Mice, Transgenic , Peyer's Patches/cytology , Peyer's Patches/immunology , Receptors, Antigen, T-Cell, alpha-beta/deficiency , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/deficiency , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Interleukin-2/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology
4.
Pathol Int ; 52(3): 175-80, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11972860

ABSTRACT

Circulating leukocytes, particularly neutrophils and monocytes, are important effector cells in the induction of many forms of glomerulonephritis. Adhesion molecules, especially selectins, are also thought to be critical for the development of this disease. We examined the possible suppressive effect of soluble E-selectin on the development of experimental lupus nephritis induced by the injection of a hybridoma clone (2B11.3) derived from an MRL/MpJ-lpr/lpr lupus mouse. This clone produces IgG3 antibodies that induce severe proliferative glomerulonephritis resembling lupus nephritis when injected into normal mice. Transgenic mice with a soluble E-selectin gene were injected intraperitoneally with the hybridoma cells and histopathologically examined on day 15. As a result, the development of glomerulonephritis was significantly suppressed. This suppression was characterized by fewer inflammatory cell infiltrates, compared with non-transgenic litter mates, despite the fact that there were no remarkable differences in immunoglobulin deposits or expression of E-selectin between the two groups. These findings suggest that by controlling inflammatory cell infiltration, soluble E-selectin plays a preventative role in the development of a particular type of lupus nephritis.


Subject(s)
E-Selectin/genetics , Lupus Nephritis/prevention & control , Animals , Antibodies, Monoclonal/pharmacology , Disease Models, Animal , E-Selectin/immunology , Hybridomas/immunology , Hybridomas/pathology , Hybridomas/transplantation , Immunoglobulin G/blood , Immunoglobulin G/genetics , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Transgenic
5.
Curr Opin Immunol ; 14(2): 255-9, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11869901

ABSTRACT

CD8alphabeta(+) and CD4(+) intraepithelial lymphocytes, the progeny of double-positive thymocytes, are oligoclonal T-cell populations that have accumulated in the gut wall as the result of repeated antigenic stimulations, which lead to rounds of traffic through the lymph/blood circuit ending in an alpha4beta7-integrin-driven homing all along the gut mucosa. In contrast, CD8alphaalpha(+) intraepithelial lymphocytes, which may be TCRgammadelta(+) or alphabeta(+), result in part from local differentiation in the gut, but studies comparing euthymic and athymic mice suggest a thymic double-negative origin for many of them.


Subject(s)
Cell Lineage/physiology , Intestinal Mucosa/immunology , T-Lymphocytes/physiology , Animals , CD8 Antigens/physiology , Humans , Immunity, Mucosal , Intestinal Mucosa/cytology , Intestinal Mucosa/physiology , Peyer's Patches/cytology , Peyer's Patches/physiology , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes/cytology , Thoracic Duct/cytology , Thoracic Duct/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...