Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Minerva Anestesiol ; 87(10): 1091-1099, 2021 10.
Article in English | MEDLINE | ID: mdl-34102806

ABSTRACT

BACKGROUND: Lombardy was the epicenter in Italy of the first wave of COVID-19 pandemic. To face the contagion growth, from March 8 to May 8, 2020, a regional law redesigned the hub-and-spoke system for time-dependent diseases to better allocate resources for COVID-19 patients. METHODS: We report the reorganization of the major hospital in Lombardy during COVID-19 pandemic, including the rearrangement of its ICU beds to face COVID-19 pandemic and fulfill its role as extended hub for time-dependent diseases while preserving transplant activity. To highlight the impact of the emergently planned hub-and-spoke system, all patients admitted to a COVID-19-free ICU hub for trauma, neurosurgical emergencies and stroke during the two-month period were retrospectively collected and compared to 2019 cohort. Regional data on organ procurement was retrieved. Observed-to-expected (OE) in-ICU mortality ratios were computed to test the impact of the pandemic on patients affected by time-dependent diseases. RESULTS: Dynamic changes in ICU resource allocation occurred according to local COVID-19 epidemiology/trends of patients referred for time-dependent diseases. The absolute increase of admissions for trauma, neurosurgical emergencies and stroke was roughly two-fold. Patients referred to the hub were older and characterized by more severe conditions. An increase in crude mortality was observed, though OE ratios for in-ICU mortality were not statistically different when comparing 2020 vs. 2019. An increase in local organ procurement was observed, limiting the debacle of regional transplant activity. CONCLUSIONS: We described the effects of a regional emergently planned hub-and-spoke system for time-dependent diseases settled in the epicenter of COVID-19 pandemic in Italy.


Subject(s)
COVID-19 , Pandemics , Humans , Intensive Care Units , Italy/epidemiology , Retrospective Studies , SARS-CoV-2
2.
medRxiv ; 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32511450

ABSTRACT

Introduction: the current worldwide outbreak of Coronavirus disease 2019 (COVID-19) due to a novel coronavirus (SARS-CoV-2) is seriously threatening the public health. The number of infected patients is continuously increasing and the need for Intensive Care Unit admission ranges from 5 to 26%. The mortality is reported to be around 3.4% with higher values for the elderly and in patients with comorbidities. Moreover, this condition is challenging the healthcare system where the outbreak reached its highest value. To date there is still no available treatment for SARS-CoV-2. Clinical and preclinical evidence suggests that nitric oxide (NO) has a beneficial effect on the coronavirus-mediated acute respiratory syndrome, and this can be related to its viricidal effect. The time from the symptoms' onset to the development of severe respiratory distress is relatively long. We hypothesize that high concentrations of inhaled NO administered during early phases of COVID-19 infection can prevent the progression of the disease. Methods and analysis: This is a multicenter randomized controlled trial. Spontaneous breathing patients admitted to the hospital for symptomatic COVID-19 infection will be eligible to enter the study. Patients in the treatment group will receive inhaled NO at high doses (140-180 parts per million) for 30 minutes, 2 sessions every day for 14 days in addition to the hospital care. Patient in the control group will receive only hospital care. The primary outcome is the percentage of patients requiring endotracheal intubation due to the progression of the disease in the first 28 days from enrollment in the study. Secondary outcomes include mortality at 28 days, proportion of negative test for SARS-CoV-2 at 7 days and time to clinical recovery. Ethics and dissemination: The trial protocol has been approved at the Investigation Review Boards of Xijing Hospital (Xi'an, China) and The Partners Human Research Committee of Massachusetts General Hospital (Boston, USA) is pending. Recruitment is expected to start in March 2020. Results of this study will be published in scientific journals, presented at scientific meetings, and on related website or media in fighting this widespread contagious disease.

3.
medRxiv ; 2020 May 24.
Article in English | MEDLINE | ID: mdl-32511534

ABSTRACT

Introduction: Severe acute respiratory syndrome due to novel Coronavirus (SARS-CoV-2) related infection (COVID-19) is characterized by severe ventilation perfusion mismatch leading to refractory hypoxemia. To date, there is no specific treatment available for COVID-19. Nitric oxide is a selective pulmonary vasodilator gas used as a rescue therapy in refractory hypoxemia due to acute respiratory distress syndrome (ARDS). In has also shown invitro and clinical evidence that inhaled nitric oxide gas (iNO) has antiviral activity against other strains of coronavirus. The primary aim of this study is to determine whether inhaled NO improves oxygenation in patients with hypoxic COVID-19. This is a multicenter randomized controlled trial with 1:1 individual allocation. Patients will be blinded to the treatment. Methods and analysis: Intubated patients admitted to the intensive care unit with confirmed SARS-CoV-2 infection and severe hypoxemia will be randomized to receive inhalation of NO (treatment group) or not (control group). Treatment will be stopped when patients are free from hypoxemia for more than 24 hours. The primary outcome evaluates levels of oxygenation between the two groups at 48 hours. Secondary outcomes include rate of survival rate at 28 and 90 days in the two groups, time to resolution of severe hypoxemia, time to achieve negativity of SARS-CoV-2 RT-PCR tests. Ethics and dissemination: The study protocol has been approved by the Investigational Review Board of Xijing Hospital (Xi'an, China) and by the Partners Human Research Committee (Boston, USA). Recruitment will start after approval of both IRBs and local IRBs at other enrolling centers. Results of this study will be published in scientific journals, presented at scientific meetings, reported through flyers and posters, and published on related website or media in combating against this widespread contagious disease. Trial registration: Clinicaltrials.gov. NCT04306393.

4.
Anesth Analg ; 120(2): 373-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25360481

ABSTRACT

BACKGROUND: An increased alveolar-arterial oxygen tension difference is frequent in anesthetized patients. In this study, we evaluated the effect on the lung of anesthesia, muscle paralysis, and a brief course of mechanical ventilation. METHODS: Lung diffusion for carbon monoxide (DLCO), including pulmonary capillary blood volume (Vc) and conductance of the alveolar-capillary membrane (DM), and pulmonary surfactant protein type B (a marker of alveolar damage) were measured in 45 patients without pulmonary disease undergoing extrathoracic surgery. RESULTS: Anesthesia, muscle paralysis, and mechanical ventilation led to impairment of gas exchange, with a reduction of DLCO values immediately after anesthetic induction due to a concomitant reduction of both DM and Vc. While changes in DM were due to the reduction of lung volume, changes in Vc were not limited to volume loss, since the Vc/alveolar volume ratio decreased significantly. Although DLCO and its components decreased immediately after induction, none of the values decreased further at 1 and 3 hours. Surfactant protein type B, however, was unchanged immediately after anesthesia but increased at 1 hour after induction and further increased after 3 hours of anesthesia. The level of alveolar damage correlated with the reduction of lung perfusion and lung dynamic strain (i.e., ratio between tidal volume and end-expiratory lung volume). CONCLUSIONS: A brief course of anesthesia and controlled ventilation leads to: (1) alveolar damage, which is correlated with lung strain and perfusion, and (2) impaired gas exchange mainly due to volume loss but also to reduced aerated lung perfusion.


Subject(s)
Anesthesia , Carbon Monoxide/metabolism , Lung/drug effects , Lung/physiopathology , Paralysis/physiopathology , Pulmonary Diffusing Capacity/drug effects , Pulmonary Surfactant-Associated Protein B/metabolism , Respiration, Artificial , Adult , Aged , Anesthetics , Blood Pressure/drug effects , Female , Humans , Lung/metabolism , Lung Volume Measurements , Male , Middle Aged , Paralysis/chemically induced , Pulmonary Gas Exchange
SELECTION OF CITATIONS
SEARCH DETAIL
...