Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 518(7539): 417-21, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25470037

ABSTRACT

T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORγt, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORγt in response to TGF-ß signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.


Subject(s)
Interleukin-17/biosynthesis , Protein Biosynthesis , Th17 Cells/metabolism , Ubiquitin-Specific Proteases/metabolism , Animals , Enzyme Stability , Female , Inflammation/genetics , Inflammation/pathology , Intestine, Small/metabolism , Intestine, Small/pathology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Signal Transduction , Substrate Specificity , Transforming Growth Factor beta/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/biosynthesis , Ubiquitin-Specific Proteases/deficiency , Ubiquitin-Specific Proteases/genetics , Ubiquitination
2.
J Mol Biol ; 373(4): 924-40, 2007 Nov 02.
Article in English | MEDLINE | ID: mdl-17825836

ABSTRACT

We have previously established a minimalist approach to antibody engineering by using a phage-displayed framework to support complementarity determining region (CDR) diversity restricted to a binary code of tyrosine and serine. Here, we systematically augmented the original binary library with additional levels of diversity and examined the effects. The diversity of the simplest library, in which only heavy chain CDR positions were randomized by the binary code, was expanded in a stepwise manner by adding diversity to the light chain, by diversifying non-paratope residues that may influence CDR conformations, and by adding additional chemical diversity to CDR-H3. The additional diversity incrementally improved the affinities of antibodies raised against human vascular endoethelial growth factor and the structure of an antibody-antigen complex showed that tyrosine side-chains are sufficient to mediate most of the interactions with antigen, but a glycine residue in CDR-H3 was critical for providing a conformation suitable for high-affinity binding. Using new high-throughput procedures and the most complex library, we produced multiple high-affinity antibodies with dissociation constants in the single-digit nanomolar range against a wide variety of protein antigens. Thus, this fully synthetic, minimalist library has essentially recapitulated the capacity of the natural immune system to generate high-affinity antibodies. Libraries of this type should be highly useful for proteomic applications, as they minimize inherent complexities of natural antibodies that have hindered the establishment of high-throughput procedures. Furthermore, analysis of a large number of antibodies derived from these well-defined and simplistic libraries allowed us to uncover statistically significant trends in CDR sequences, which provide valuable insights into antibody library design and into factors governing protein-protein interactions.


Subject(s)
Antibodies/chemistry , Peptide Library , Protein Engineering/methods , Amino Acid Sequence , Complementarity Determining Regions/chemistry , Humans , Immunoglobulin Fab Fragments/chemistry , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Vascular Endothelial Growth Factor A/chemistry
3.
Nucleic Acids Res ; 31(6): e25, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12626724

ABSTRACT

Technologies allowing direct detection of specific RNA/DNA sequences occasionally serve as an alternative to amplification methods for gene expression studies. In these direct methods the hybridization of probes takes place in complex mixtures, thus specificity and sensitivity still limit the use of current technologies. To address these challenges, we developed a new technique called the nucleic acid capture assay, involving a direct multi-capture system. This approach combines a 3'-ethylene glycol scaffolding with the incorporation of 2'-methoxy deoxyribonucleotides in the capture sequences. In our design, all nucleotides other than those complementary to the target mRNA have been replaced by an inert linker, resulting in significant reductions in non-specific binding. We also provide a versatile method to detect the presence of captured targets by using specific labeled probes with alkaline phosphatase-conjugated anti-label antibodies. This direct, flexible and reliable technique for gene expression analysis is well suited for high-throughput screening and has potential for DNA microarray applications.


Subject(s)
Chemistry Techniques, Analytical/methods , Nucleic Acids/analysis , Fetal Hemoglobin/genetics , Gene Expression , Humans , K562 Cells , Nucleic Acids/genetics , RNA/genetics , RNA/metabolism , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...