Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Prolif ; : e13256, 2022 May 19.
Article in English | MEDLINE | ID: mdl-36574589

ABSTRACT

OBJECTIVES: Induced pluripotent stem cells (iPSCs) generated by monolayer cultures is plagued by low efficiencies, high levels of manipulation and operator unpredictability. We have developed a platform, reprogramming, expansion, and differentiation on Microcarriers, to solve these challenges. MATERIALS AND METHODS: Five sources of human somatic cells were reprogrammed, selected, expanded and differentiated in microcarriers suspension cultures. RESULTS: Improvement of transduction efficiencies up to 2 times was observed. Accelerated reprogramming in microcarrier cultures was 7 days faster than monolayer, providing between 30 and 50-fold more clones to choose from fibroblasts, peripheral blood mononuclear cells, T cells and CD34+ stem cells. This was observed to be due to an earlier induction of genes (ß-catenin, E-cadherin and EpCAM) on day 4 versus monolayer cultures which occurred on days 14 or later. Following that, faster induction and earlier stabilization of pluripotency genes occurred during the maturation phase of reprogramming. Integrated expansion without trypsinization and efficient differentiation, without embryoid bodies formation, to the three germ-layers, cardiomyocytes and haematopoietic stem cells were further demonstrated. CONCLUSIONS: Our method can solve the inherent problems of conventional monolayer cultures. It is highly efficient, cell dissociation free, can be operated with lower labor, and allows testing of differentiation efficiency without trypsinization and generation of embryoid bodies. It is also amenable to automation for processing more samples in a small footprint, alleviating many challenges of manual monolayer selection.

2.
Cell Prolif ; 55(8): e13218, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35289971

ABSTRACT

OBJECTIVES: Large-scale generation of universal red blood cells (RBCs) from O-negative (O-ve) human induced pluripotent stem cells (hiPSCs) holds the potential to alleviate worldwide shortages of blood and provide a safe and secure year-round supply. Mature RBCs and reticulocytes, the immature counterparts of RBCs generated during erythropoiesis, could also find important applications in research, for example in malaria parasite infection studies. However, one major challenge is the lack of a high-density culture platform for large-scale generation of RBCs in vitro. MATERIALS AND METHODS: We generated 10 O-ve hiPSC clones and evaluated their potential for mesoderm formation and erythroid differentiation. We then used a perfusion bioreactor system to perform studies with high-density cultures of erythroblasts in vitro. RESULTS: Based on their tri-lineage (and specifically mesoderm) differentiation potential, we isolated six hiPSC clones capable of producing functional erythroblasts. Using the best performing clone, we demonstrated the small-scale generation of high-density cultures of erythroblasts in a perfusion bioreactor system. After process optimization, we were able to achieve a peak cell density of 34.7 million cells/ml with 92.2% viability in the stirred bioreactor. The cells expressed high levels of erythroblast markers, showed oxygen carrying capacity, and were able to undergo enucleation. CONCLUSIONS: This study demonstrated a scalable platform for the production of functional RBCs from hiPSCs. The perfusion culture platform we describe here could pave the way for large volume-controlled bioreactor culture for the industrial generation of high cell density erythroblasts and RBCs.


Subject(s)
Induced Pluripotent Stem Cells , Bioreactors , Cell Differentiation , Clone Cells , Erythrocytes , Erythropoiesis , Humans , Perfusion
3.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575977

ABSTRACT

Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.


Subject(s)
Blood Substitutes/therapeutic use , Erythrocytes/cytology , Hematopoietic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Cell Differentiation/genetics , Erythrocyte Transfusion , Erythropoiesis/genetics , Fetal Blood/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL