Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 252(Pt 1): 118760, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38522741

ABSTRACT

A novel method was used to synthesize benzimidazole-2-ones from the corresponding benzimidazolium salts. These salts were subsequently reacted with potassium tertiary butoxide (KOtBu), followed by oxidation using tertiary butyl hydrogen peroxide (TBHP) at room temperature in tetrahydrofuran (THF) to obtain the desired products in 1 h with excellent yields. After optimizing the reaction conditions, the study focused on preparing benzimidazole-2-ones with diverse substituents at N1 and N3 positions, including benzyl, 2',4',6'-trimethyl benzyl groups, and long-chain aliphatic substituents (hexyl, octyl, decyl, and dodecyl). The compounds were characterized by 1H and 13C NMR spectra, of which compound 2a is supported by single crystal XRD. Benzimidazole-2-one compounds exhibited promising anti-inflammatory and anti-cancer properties. The inhibition of mitochondrial Heat Shock Protein 60 (HSP60) of title compounds was also explored. Computational simulations were employed to assess anti-cancer properties of 19 benzimidazole-2-one derivatives (potential drugs). In-silico docking studies demonstrated promising binding interactions with HSP60, and these results were supported by molecular dynamics simulations. Notably, molecules 2b and 2d exhibited high affinity for HSP60 protein, highlighting their potential efficacy. The developed ligands were viable for the treatment of hepatocellular carcinoma (HCC). The findings provide valuable initial evidence supporting the efficacy of benzimidazole-2-ones as HSP60 inhibitors and lay the foundation for subsequent studies, including in-vitro assays.


Subject(s)
Benzimidazoles , Benzimidazoles/chemistry , tert-Butylhydroperoxide/chemistry , Molecular Docking Simulation , Catalysis , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Computer Simulation
2.
J Org Chem ; 83(23): 14362-14384, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30376626

ABSTRACT

The evolution of a more reactive chiral vanadium catalyst for enantioselective oxidative coupling of phenols is reported, ultimately resulting in a simple monomeric vanadium species combined with a Brønsted or Lewis acid additive. The resultant vanadium complex is found to effect the asymmetric oxidative ortho-ortho coupling of simple phenols and 2-hydroxycarbazoles with good to excellent levels of enantioselectivity. Experimental and quantum mechanical studies of the mechanism indicate that the additives aggregate the vanadium monomers. In addition, a singlet to triplet crossover is implicated prior to carbon-carbon bond formation. The two lowest energy diastereomeric transition states leading to the enantiomeric products differ substantially with the path to the minor enantiomer involving greater torsional strain between the two phenol moieties.


Subject(s)
Oxidative Coupling , Biological Products/chemistry , Catalysis , Models, Molecular , Molecular Structure , Naphthols/chemistry , Phenols/chemistry , Vanadium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...