Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 96(6): e29692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804172

ABSTRACT

To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.


Subject(s)
DNA, Circular , DNA, Viral , G-Quadruplexes , Hepatitis B virus , Single-Domain Antibodies , Humans , Hepatitis B virus/genetics , Hepatitis B virus/immunology , DNA, Circular/genetics , DNA, Viral/genetics , Hep G2 Cells , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Genome, Viral , Promoter Regions, Genetic , Virus Replication , Hepatitis B/virology
2.
Arch Microbiol ; 205(8): 294, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480395

ABSTRACT

A novel motile bacterium was isolated from a sediment sample collected in Kochi backwaters, Kerala, India. This bacterium is Gram negative, rod shaped, 1.0-1.5 µm wide, and 2.0-3.0 µm long. It was designated as strain AK27T. Colonies were grown on marine agar displayed circular, off-white, shiny, moist, translucent, flat, margin entire, 1-2 mm in diameter. The major fatty acids identified in this strain were C18:1 ω7c, C16:0, and summed in feature 3. The composition of polar lipids in the strain AK27T included phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unidentified amino lipid, two unidentified aminophospholipids, two unidentified phospholipids, and six unidentified lipids. The genomic DNA of strain AK27T exhibited a G+C content of 56.4 mol%. Based on the analysis of 16S rRNA gene sequence, strain AK27T showed sequence similarity to M. ramblicola D7T and M. zhoushanense WM3T as 98.99% and 98.58%, respectively. Compared to other type strains of the Marinobacterium genus, strain AK27T exhibited sequence similarities ranging from 91.7% to 96.4%. When compared to Marinobacterium zhoushanense WM3T and Marinobacterium ramblicola D7T, strain AK27T exhibited average nucleotide identity values of 80.25% and 79.97%, and dDDH values of 22.9% and 22.6%, respectively. The genome size of the strain AK27T was 4.55 Mb, with 4,229 coding sequences. Based on the observed phenotypic and chemotaxonomic features, and the results of phylogenetic and phylogenomic analysis, this study proposes the classification of strain AK27T as a novel species within the genus Marinobacterium. The proposed name for this novel species is Marinobacterium lacunae sp. nov.


Subject(s)
Alteromonadaceae , Phylogeny , RNA, Ribosomal, 16S/genetics , Agar , Cardiolipins
3.
J Med Virol ; 95(5): e28783, 2023 05.
Article in English | MEDLINE | ID: mdl-37212309

ABSTRACT

Monkeypox virus (MPXV) is a double-stranded DNA virus from the family Poxviridae, which is endemic in West and Central Africa. Various human outbreaks occurred in the 1980s, resulting from a cessation of smallpox vaccination. Recently, MPXV cases have reemerged in non-endemic nations, and the 2022 outbreak has been declared a public health emergency. Treatment optionsare limited, and many countries lack the infrastructure to provide symptomatic treatments. The development of cost-effective antivirals could ease severe health outcomes. G-quadruplexes have been a target of interest in treating viral infections with different chemicals. In the present work, a genomic-scale mapping of different MPXV isolates highlighted two conserved putative quadruplex-forming sequences MPXV-exclusive in 590 isolates. Subsequently, we assessed the G-quadruplex formation using circular dichroism spectroscopy and solution small-angle X-ray scattering. Furthermore, biochemical assays indicated the ability of MPXV quadruplexes to be recognized by two specific G4-binding partners-Thioflavin T and DHX36. Additionally, our work also suggests that a quadruplex binding small-molecule with previously reported antiviral activity, TMPyP4, interacts with MPXV G-quadruplexes with nanomolar affinity in the presence and absence of DHX36. Finally, cell biology experiments suggests that TMPyP4 treatment substantially reduced gene expression of MPXV proteins. In summary, our work provides insights into the G-quadruplexes from the MPXV genome that can be further exploited to develop therapeutics.


Subject(s)
G-Quadruplexes , Monkeypox virus , Mpox (monkeypox) , Monkeypox virus/genetics , G-Quadruplexes/drug effects , Mpox (monkeypox)/virology , Genome, Viral , Scattering, Small Angle , X-Ray Diffraction , Antiviral Agents/pharmacology , Porphyrins/pharmacology , Enzyme Inhibitors/pharmacology
4.
Front Microbiol ; 13: 933373, 2022.
Article in English | MEDLINE | ID: mdl-35958153

ABSTRACT

The common effluent treatment plant (CETP) located at Baddi treats the industrial effluent from various industries, leading to the pooling of a diverse range of substrates and metabolites. The nutrient loading and its availability decide the balance of the microbial community and its diversity. The samples thus collected from the activated sludge (BS14) of CETP and Sirsa river (SR1) from the vicinity of CETP effluent discharge were processed for the whole metagenome analysis to reveal the microbial community and its functional potential. The taxonomic classification of the BS14 sample showed the dominance of the bacterial community with 96% of abundance, whereas the SR1 was populated by eukaryotes representing 50.4% of the community of SR1. The bacterial community of SR1 was constituted of 47.2%. The functional analysis of BS14 and SR1 with GhostKOALA against the KEGG database assigned 43.7% and 27.8% of the open reading frames (ORFs) with functions. It revealed the xenobiotic degradation modules with complete pathways along with resistance against the beta-lactams. The analysis with the comprehensive antibiotic resistance database (CARD) revealed 33 and 32 unique types of antimicrobial resistance in BS14 and SR1, respectively. Both the samples were dominated by the beta-lactam resistance genes. The carbohydrate-active enzyme (CAZy) database assigned a total of 6,611 and 2,941 active enzymes to BS14 and SR1, respectively. In contrast, the glycosyl hydrolases (GH) and glycosyltransferases (GT) class of enzymes were found to be abundant in both the samples as compared with polysaccharide lyases (PL), auxiliary activities (AA), carbohydrate esterases (CE), and carbohydrate-binding module (CBM).

5.
Int J Biol Macromol ; 188: 1012-1024, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34375665

ABSTRACT

The oxygenases have attracted considerable attention in enzyme-mediated bioremediation of xenobiotic compounds due to their high specificity, cost-effectiveness, and targeted field applications. Here, we performed a functional metagenomics approach to cope with culturability limitations to isolate a novel extradiol dioxygenase. Fosmid clone harboring dioxygenase gene was sequenced and analyzed by bioinformatics tools. One ring-cleaving dioxygenase RW4-MPC (metapyrocatechase) was purified and characterized to examine its degradation efficiency. The RW4-MPC was significantly active in the temperature and pH range of 5 to 40 °C, and 7-10, respectively, with an optimum temperature of 25 °C and pH 8. To gain insight into observed differential activity, Small-Angle X-ray Scattering (SAXS) data of the protein samples were analyzed, which brought forth that the RW4-MPC molecules form tight globular tetramers in solution. This native association was stable till 35 °C, and protein started to associate at higher temperatures, explaining heat-induced loss of function. Similarly, RW4-MPC aggregated or lost globular profile below pH 7 or at pH 10, respectively. The kinetic parameters showed the six folds high catalytic efficiency of RW4-MPC towards 2,3-dihydroxy biphenyl than catechol and its derivatives. RW4-MPC molecules showed remarkable retention of functionality in hypersaline conditions with more than 70% activity in a buffer having 3 M NaCl concentration. In concordance, SAXS data analysis showed retention of functional shape profile in hypersaline conditions. The halotolerant and oxygen insensitive nature of this enzyme makes it a potential candidate for bioremediation.


Subject(s)
Catechol 2,3-Dioxygenase/chemistry , Catechol 2,3-Dioxygenase/metabolism , Metagenomics , Scattering, Small Angle , X-Ray Diffraction , Amino Acid Sequence , Catechol 2,3-Dioxygenase/isolation & purification , Circular Dichroism , Clone Cells , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Ions , Kinetics , Metals/pharmacology , Molecular Weight , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sodium Chloride/pharmacology , Substrate Specificity/drug effects , Temperature
6.
Antonie Van Leeuwenhoek ; 114(7): 1117-1130, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34059969

ABSTRACT

A novel Gram-staining-negative, rod-shaped, 0.6-0.8 µm wide and 2.0-3.0 µm in length, motile bacterium designated strain AK62T, was isolated from the green algal mat collected from saltpan, Kakinada, Andhra Pradesh, India. Colonies on ZMA were circular, off-white, shiny, moist, translucent, 1-2 mm in diameter, flat, with an entire margin. The major fatty acids include C16:0, C18:1 ω7c, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c and/or iso-C14:0 3-OH). Polar lipids include diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, three unidentified phospholipids, and one unidentified lipid. Polyamine includes Spermidine. The DNA G + C content of the strain AK62T was 58.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain AK62T was closely related to the type strains Marinobacterium sediminicola, Marinobacterium coralli and Marinobacterium stanieri with a pair-wise sequence similarity of 96.9, 96.6 and 96.6%, respectively, forming a distinct branch within the genus Marinobacterium and clustered with M. stanieri, M. sediminicola, M. coralli and M. maritimum cluster. Strain AK62T shares average nucleotide identity (ANIb, based on BLAST) of 78.44, 76.69, and 76.95% with M. sediminicola CGMCC 1.7287T, M. stanieri DSM 7027T, and Marinobacterium halophilum Mano11T respectively. Based on the observed phenotypic, chemotaxonomic characteristics, and phylogenetic analysis, strain AK62T is described in this study as a novel species in the genus Marinobacterium, for which the name Marinobacterium alkalitolerans sp. nov. is proposed. The type strain of M. alkalitolerans is AK62T (= MTCC 12102T = JCM 31159T = KCTC 52667T).


Subject(s)
Oceanospirillaceae/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , India , Nitrate Reductase , Oceanospirillaceae/isolation & purification , Phospholipids/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone , Urease
7.
Front Microbiol ; 11: 2082, 2020.
Article in English | MEDLINE | ID: mdl-32983058

ABSTRACT

Haloarchaea are salt-loving archaea and potential source of industrially relevant halotolerant enzymes. In the present study, three reddish-pink, extremely halophilic archaeal strains, namely wsp1 (wsp-water sample Pondicherry), wsp3, and wsp4, were isolated from the Indian Solar saltern. The phylogenetic analysis based on 16S rRNA gene sequences suggests that both wsp3 and wsp4 strains belong to Halogeometricum borinquense while wsp1 is closely related to Haloferax volcanii species. The comparative genomics revealed an open pangenome for both genera investigated here. Whole-genome sequence analysis revealed that these isolates have multiple copies of industrially/biotechnologically important unique genes and enzymes. Among these unique enzymes, for recombinant expression and purification, we selected four putative α-amylases identified in these three isolates. We successfully purified functional halotolerant recombinant Amy2, from wsp1 using pelB signal sequence-based secretion strategy using Escherichia coli as an expression host. This method may prove useful to produce functional haloarchaeal secretory recombinant proteins suitable for commercial or research applications. Biochemical analysis of Amy2 suggests the halotolerant nature of the enzyme having maximum enzymatic activity observed at 1 M NaCl. We also report the isolation and characterization of carotenoids purified from these isolates. This study highlights the presence of several industrially important enzymes in the haloarchaeal strains which may potentially have improved features like stability and salt tolerance suitable for industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...