Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 10(4): e0026222, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35852325

ABSTRACT

Elizabethkingia anophelis, a nonfermenting Gram-negative bacterium, causes life-threatening health care-associated infections. E. anophelis harbors multidrug resistance (MDR) genes and is intrinsically resistant to various classes of antibiotics. Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and contain materials involved in bacterial survival and pathogenesis. OMVs specialize and tailor their functions by carrying different components to challenging environments and allowing communication with other microorganisms or hosts. In this study, we sought to understand the characteristics of E. anophelis OMVs under different antibiotic stress conditions. An extensively drug-resistant clinical isolate, E. anophelis C08, was exposed to multiple antibiotics in vitro, and its OMVs were characterized using nanoparticle tracking analysis, transmission electron microscopy, and proteomic analysis. Protein functionality analysis showed that the OMVs were predominantly involved in metabolism, survival, defense, and antibiotic resistance processes, such as the Rag/Sus family, the chaperonin GroEL, prenyltransferase, and an HmuY family protein. Additionally, a protein-protein interaction network demonstrated that OMVs from imipenem-treated E. anophelis showed significant enrichments in the outer membrane, adenyl nucleotide binding, serine-type peptidase activity, the glycosyl compound metabolic process, and cation binding proteins. Collectively, the OMV proteome expression profile indicates that the role of OMVs is immunologically relevant and related to bacterial survival in antibiotic stress environments rather than representing a resistance point. IMPORTANCE Elizabethkingia anophelis is a bacterium often associated with nosocomial infection. This study demonstrated that imipenem-induced E. anophelis outer membrane vesicles (OMVs) are immunologically relevant and crucial for bacterial survival under antibiotic stress conditions rather than being a source of antibiotic resistance. Furthermore, this is the first study to discuss the protein-protein interaction network of the OMVs released by E. anophelis, especially under antibiotic stress. Our findings provide important insights into clinical antibiotic stewardship.


Subject(s)
Flavobacteriaceae , Proteomics , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Flavobacteriaceae/genetics , Flavobacteriaceae/metabolism , Imipenem
2.
Biomed Res Int ; 2022: 4230788, 2022.
Article in English | MEDLINE | ID: mdl-35372567

ABSTRACT

Antibiotic resistance is one of the significant problems globally; there is an increase in resistance with introducing every new class of antibiotics. Further, this has become one of the reasons for arising of new resistance mechanisms in Acinetobacter baumannii. In this study, we have screened natural compounds as a possible inhibitor against the NDM-1 ß-lactamase enzyme from A. baumannii using a combination of in silico methods and in vitro evaluation. The database of natural compounds was screened against NDM-1 protein, using Glide docking, followed by QM-polarised ligand docking (QPLD). When the screened hits were validated in vitro, withaferin A and mangiferin had good IC50 values in reducing the activity of NDM-1 enzymes, and their fractional inhibitory concentration index (FICI) was ascertained in combination with imipenem. The withaferin A and mangiferin-NDM-1 docking complexes were analyzed for structural stability by molecular dynamic simulation analysis using GROMACS for 100 ns. The molecular properties of the natural compounds were then calculated using density functional theory (DFT). Withaferin A and mangiferin showed promising inhibitory activity and can be a natural compound candidate inhibitor synergistically used along with carbapenems against NDM-1 producing A. baumannii.


Subject(s)
Acinetobacter baumannii , beta-Lactamase Inhibitors , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Penicillins , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
3.
J Glob Antimicrob Resist ; 22: 219-225, 2020 09.
Article in English | MEDLINE | ID: mdl-32084603

ABSTRACT

OBJECTIVES: As a common nosocomial infection bacterium, A. baumannii's drug resistance rate continues to rise. In this study, the objective was to explore the possible reasons for the increased drug resistance of A. baumannii after tigecycline treatment. METHODS: Based on the drug resistance analysis of 183 clinical isolates of A. baumannii, a pair of strains (AB711 and AB721) which changed their resistance after treatment was selected. Tigecycline was used to induce the drug resistance of strain AB711 in vitro. The differential expressed genes from A. baumannii strains were analyzed using whole gene sequencing (WGS) and RNA sequencing (RNA-seq) combined with online MLST, SNP tools and bioinformatics software, and verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: AB721 became more resistant to tetracyclines than AB711 at the initial detection. However, after a period of time, the resistance of AB711 and AB721 became consistent. This phenomenon can also be repeated using AB711 in vitro. After induction, the AB711 with increased MIC value of tigecycline was named AB712. The results of WGS, MLST and SNP based Phylogenetic tree indicated that AB711, AB712, AB721 were co-origin and belong to ST2 (Pasteur) / ST1791 (Oxford). Comparative transcriptome indicated that the Differential expression of some genes can play an important role in the resistance enhancement process of AB711. For example, compared with AB711, genes related to benzene-containing compound metabolic process, translation, ribosomal structure and biogenesis and so on were upregulated significantly in AB712. In addition, efflux pumps such as RND transporter permease subunit, EmrAB, MacB, and Tet resistance operon were also upregulated. CONCLUSION: Tigcycline induced changes in the expression of some related genes in A. baumannii, which may be the main reason for its increased drug resistance.


Subject(s)
Acinetobacter baumannii , Drug Resistance, Bacterial , Tigecycline , Acinetobacter baumannii/genetics , Gene Expression Profiling , Genome, Bacterial , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Tigecycline/pharmacology , Transcriptome
4.
BMC Microbiol ; 20(1): 31, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32046644

ABSTRACT

BACKGROUND: Acinetobacter baumannii is a multidrug-resistant (MDR) hazardous bacterium with very high antimicrobial resistance profiles. Outer membrane vesicles (OMVs) help directly and/or indirectly towards antibiotic resistance in these organisms. The present study aims to look on the proteomic profile of OMV as well as on the bacterial transcriptome upon exposure and induction with eravacycline, a new synthetic fluorocycline. RNA sequencing analysis of whole-cell and LC-MS/MS proteomic profiling of OMV proteome abundance were done to identify the differential expression among the eravacycline-induced A. baumannii ATCC 19606 and A. baumannii clinical strain JU0126. RESULTS: The differentially expressed genes from the RNA sequencing were analysed using R package and bioinformatics software and tools. Genes encoding drug efflux and membrane transport were upregulated among the DEGs from both ATCC 19606 and JU0126 strains. As evident with the induction of eravacycline resistance, ribosomal proteins were upregulated in both the strains in the transcriptome profiles and also resistance pumps, such as MFS, RND, MATE and ABC transporters. High expression of stress and survival proteins were predominant in the OMVs proteome with ribosomal proteins, chaperons, OMPs OmpA, Omp38 upregulated in ATCC 19606 strain and ribosomal proteins, toluene tolerance protein, siderophore receptor and peptidases in the JU0126 strain. The induction of resistance to eravacycline was supported by the presence of upregulation of ribosomal proteins, resistance-conferring factors and stress proteins in both the strains of A. baumannii ATCC 19606 and JU0126, with the whole-cell gene transcriptome towards both resistance and stress genes while the OMVs proteome enriched more with survival proteins. CONCLUSION: The induction of resistance to eravacycline in the strains were evident with the increased expression of ribosomal and transcription related genes/proteins. Apart from this resistance-conferring efflux pumps, outer membrane proteins and stress-related proteins were also an essential part of the upregulated DEGs. However, the expression profiles of OMVs proteome in the study was independent with respect to the whole-cell RNA expression profiles with low to no correlation. This indicates the possible role of OMVs to be more of back-up additional protection to the existing bacterial cell defence during the antibacterial stress.


Subject(s)
Acinetobacter baumannii/drug effects , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Tetracyclines/pharmacology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Drug Resistance, Bacterial , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial/drug effects , Gene Regulatory Networks/drug effects , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Proteomics/methods , Secretory Vesicles/genetics , Secretory Vesicles/metabolism , Sequence Analysis, RNA , Exome Sequencing
5.
J Transl Med ; 18(1): 58, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024540

ABSTRACT

BACKGROUND: Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS: AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.


Subject(s)
Asthma , Macrophages , Adult , Chemokines , Child , Cytokines , Humans , Immunity, Innate
6.
J Immunol Res ; 2019: 2835256, 2019.
Article in English | MEDLINE | ID: mdl-32083139

ABSTRACT

Acinetobacter baumannii, as a nonfermentation Gram-negative bacterium, mainly cause nosocomial infections in critically ill patients. With the widespread of multidrug-resistant Acinetobacter baumannii, the urgency of developing effective therapy options has been emphasized nowadays. Outer membrane vesicles derived from bacteria show potential vaccine effects against bacterial infection in recent study. Our present research is aimed at investigating the mechanisms involved in immune protection of mice after outer membrane vesicle immunization. As our data showed, the outer membrane vesicle from an Acinetobacter baumannii clinical strain could activate bone marrow-derived dendritic cells (BMDCs) to promote Th2 activity together with humoral immune responses to Acinetobacter baumannii-induced sepsis, which might enlighten people to have a better understanding of OMVs' role as a vaccine to prevent bacterial infections.


Subject(s)
Acinetobacter baumannii/immunology , Bacterial Vaccines/immunology , Dendritic Cells/immunology , Secretory Vesicles/immunology , Th2 Cells/immunology , Acinetobacter Infections/immunology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Animals , Bacterial Outer Membrane Proteins/immunology , Bone Marrow Cells/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Immunity, Humoral , Immunization , Male , Mice , Mice, Inbred BALB C , Secretory Vesicles/metabolism , Secretory Vesicles/ultrastructure , Sepsis/immunology , Sepsis/microbiology , Th2 Cells/metabolism
7.
Article in English | MEDLINE | ID: mdl-28000560

ABSTRACT

AIM AND OBJECTIVE: Actinomycetes produce structurally unique secondary metabolites with pharmaceutically essential bioactivities. Salinispora, an obligate marine actinomycete, produces structurally varied and unique secondary metabolites. There is plenty of scope for development of drugs from the novel compounds isolated from Salinispora. Anticancer, antibacterial and anti-protozoa activities have been shown for Salinosporamides A, B and C, the secondary metabolites identified from Salinispora, which make them interesting subjects for further extended biological activity prediction. MATERIAL AND METHODS: An in silico ligand based-pharmacophore approach was used for the prediction of extended biological targets for salinosporamide A, B and C. Pharmacophore models of salinosporamide A, B and C were generated individually and screened against known drug databases. The drugs with best fitness score were shortlisted, and their respective targets pertaining to their bioactivity were retrieved. The predicted biological drug targets were docked with salinosporamide A, B and C for validation. RESULTS: The glucocorticoid receptor and methionine aminopeptidase 2 showed good docking score and binding energy with salinosporamide A, B and C. Molecular dynamics studies of the protein-ligand complexes showed stable interactions suggesting that the predicted new targets for salinosporamides might be promising. CONCLUSIONS: The glucocorticoid receptor and methionine aminopeptidase 2 could be possible new drug targets of bioactivity of salinosporamides. These proteins could be the druggable targets for antiinflammatory and anticancer activity of salinosporamides.


Subject(s)
Actinobacteria/chemistry , Drug Discovery , Lactams/pharmacology , Lactones/pharmacology , Pyrroles/pharmacology , Actinobacteria/metabolism , Aminopeptidases/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Lactones/chemistry , Lactones/metabolism , Ligands , Metalloendopeptidases/metabolism , Molecular Docking Simulation , Protein Binding , Pyrroles/chemistry , Pyrroles/metabolism , Receptors, Glucocorticoid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...