Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21662, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954280

ABSTRACT

Liver diseases are a group of major metabolic and immune or inflammation related diseases caused due to various reasons including infection, abnormalities in immune system, genetic defects, and lifestyle habits. However, the cause-effect relationship is not completely understood in liver disease. The role of microbiome, particularly, the role of gut and oral microbiome in liver diseases has been extensively studied in recent years. More interestingly, the presence of blood microbiome and tissue microbiome has been identified in many liver diseases. The translocation of microbes from the gut into the portal circulation has been attributed to be the major reason for the presence of blood microbial components and its clinical implications in liver disorders. Besides microbial translocation, Pathogen associated Molecular Patterns (PAMPs) derived from gut microbiota might also translocate. The presence of blood microbiome in liver disease has been reviewed earlier. However, the role of blood microbiome as a biomarker and therapeutic target in liver diseases has not been analysed earlier. In this review, we confabulate the origin and physiology of blood microbiome and blood microbial components in relation to the progression and pathogenesis of liver disease. In conclusion, we discuss the translational perspectives targeting the blood microbial components in the diagnosis and therapy of liver disease.

2.
Genomics ; 114(6): 110524, 2022 11.
Article in English | MEDLINE | ID: mdl-36423774

ABSTRACT

Bay of Bengal (BoB) has immense significance with respect to ecological diversity and natural resources. Studies on microbial profiling and their functional significance at sediment level of BoB remain poorly represented. Herein, we describe the microbial diversity and metabolic potentials of BOB deep-sea sediment samples by subjecting the metagenomes to Nanopore sequencing. Taxonomic diversity ascertained at various levels revealed that bacteria belonging to phylum Proteobacteria predominantly represented in sediment samples NIOT_S7 and NIOT_S9. A comparative study with 16S datasets from similar ecological sites revealed depth as a crucial factor in determining taxonomic diversity. KEGG annotation indicated that bacterial communities possess sequence reads corresponding to carbon dioxide fixation, sulfur, nitrogen metabolism, but at varying levels. Additionally, gene sequences related to bioremediation of dyes, plastics, hydrocarbon, antibiotic resistance, secondary metabolite synthesis and metal resistance from both the samples as studied indicate BoB to represent a highly diverse environmental niche for further exploration.


Subject(s)
Bays
3.
EClinicalMedicine ; 51: 101553, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35860452

ABSTRACT

Background: Liver disease is the only major chronic disease and mortality is increasing. Earlier detection of liver fibrosis can reduce progression to cirrhosis and hepatocellular carcinoma. Many studies have reported an increased prevalence in liver fibrosis among adults in urban regions but there are few data in physically active rural populations without attributable metabolic risk factors. This aim of this study is to investigate the prevalence of abnormal liver functions tests (LFTs) and liver fibrosis among adults in a rural population. Methods: This cross-sectional study included observations from KMCH-NNCD-II (2017) study (n = 907) from a farming village, Nallampatti, located in South India. We assessed lifestyle (occupation, tobacco use and alcohol consumption using AUDIT-C questionnaire), markers for metabolic diseases (obesity, hypertension, diabetes, hypercholesterolemia), LFTs and markers for hepatitis viruses B and C. 901 participants had transient elastography to assess fibrosis. Participants with abnormal LFTs and significant liver fibrosis (F2-F4) underwent additional liver screening (caeruloplasmin, iron studies and autoimmune hepatitis panel). Multiple logistic regression analyses were performed to understand the association of liver fibrosis with lifestyle and metabolic risk factors after adjustment for co-variates. Findings: Significant liver fibrosis (F2-F4) was observed in 14.4%, and cirrhosis in 0.8%. There was an association of liver fibrosis with abnormal LFTs but no association between alcohol consumption, viral hepatitis, hepatic liver screening and liver fibrosis. Among metabolic risk factors, no association was observed for hypertension and hypercholesterolemia but diabetes [OR - 3.206 (95% CI: 1.792 - 5.736)], obesity [1.987 (1.341 - 2.944)] and metabolic syndrome [2.539 (1.680 - 3.836)] showed association with significant liver fibrosis (F2-F4) after adjustment for confounding factors. Interpretation: Our results suggest that the prevalence of liver fibrosis in rural population is similar to urban counterparts. The association of metabolic risk factors with liver fibrosis in physically active rural population warrants further investigations in future studies. Funding: This study is funded by KMCH Research Foundation, India.

4.
Biomed J ; 44(4): 504-507, 2021 08.
Article in English | MEDLINE | ID: mdl-34507920

ABSTRACT

COVID-19, an infectious disease caused by a novel coronavirus (SARS-CoV-2) has emerged as global pandemic. Here, we described the changes in microbiota of upper respiratory tract by analyzing the publically available RNA sequencing data of SARS-CoV-2-infected ferrets. The bacterial dysbiosis due to SARS-CoV-2 was largely inversely proportional to the dysbiosis caused by influenza-A virus. The bacterial taxa which are defined as healthy ecostate were significantly reduced during SARS-CoV-2 infection. Altogether, this preliminary study provides a new insight on the possible role of bacterial communities of upper respiratory tract in determining the immunity, susceptibility, and mortality for COVID-19.


Subject(s)
COVID-19 , Microbiota , Animals , Dysbiosis , Ferrets , Humans , Microbiota/genetics , RNA , Respiratory System , SARS-CoV-2 , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...