Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 25(9): 281, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31468141

ABSTRACT

Emergence of antibiotic-resistant pathogens has paved way for development of newer class of drugs that would not be susceptible to resistance. Antimicrobial peptides such as defensins that target the microbial membrane are promising candidates. ROAD-1 is an alpha-defensin present in the oral cavity of rhesus macaque and shares very high sequence similarity to human enteric defensin 5. In this study we have performed microsecond long all atom molecular dynamic simulations to understand the mechanism of action of ROAD-1. We find that ROAD-1 is able to adopt an energetically stable conformation predominantly stabilized by electrostatic interactions only in presence of bacterial membranes. In mammalian membrane even though it gets absorbed onto the bilayer, it is unable to adopt an equilibrium conformation. Binding of ROAD-1 to bilayer induces clustering of POPG molecules up to 15 Å around the peptide. POPG molecules show higher order parameters than the neighboring POPE implying coexistence of different phases. Analysis of binding free energy of ROAD-1-membrane complex indicates Arg1, Arg2, Arg7, and Arg25 to play key role in its antimicrobial activity. Unlike its homolog HD5, ROAD-1 is not observed to form a dimer. Our study gives insight into the membrane-bound conformation of ROAD-1 and its mechanism of action that can aid in designing defensin-based therapeutics. Graphical abstract Antimicrobial peptide ROAD-1 adopts a different membrane-bound conformation as compared with HD5 even though they belong to the same family implying a different mechanism of action.


Subject(s)
Bacterial Outer Membrane/metabolism , Molecular Dynamics Simulation , alpha-Defensins/metabolism , Animals , Macaca mulatta/metabolism , Protein Conformation , Substrate Specificity , alpha-Defensins/chemistry
2.
J Struct Biol ; 204(3): 435-448, 2018 12.
Article in English | MEDLINE | ID: mdl-30336202

ABSTRACT

Structural characterization of BMAP-28(1-18), a potent bovine myeloid antimicrobial peptide can aid in understanding its mechanism of action at molecular level. We report NMR structure of the BMAP-28(1-18) and its mutated analogue mutBMAP18 in SDS micelles. Structural comparison of the peptides bound to SDS micelles and POPE-POPG vesicles using circular dichroism, suggest that structures in the two lipid preparations are similar. Antimicrobial assays show that even though both these peptides adopt helical conformation, BMAP-28(1-18) is more potent than mutBMAP18 in killing bacterial cells. Our EM images clearly indicate that the peptides target the bacterial cell membrane resulting in leakage of its contents. The structural basis for difference in activity between these peptides was investigated by molecular dynamics simulations. Inability of the mutBMAP18 to retain its helical structure in presence of POPE:POPG membrane as opposed to the BMAP-28(1-18) at identical peptide/lipid ratios could be responsible for its decreased activity. Residues Ser5, Arg8 and Arg12 of the BMAP-28(1-18) are crucial for its initial anchoring to the bilayer. We conclude that along with amphipathicity, a stable secondary structure that can promote/initiate membrane anchoring is key in determining membrane destabilization potential of these AMPs. Our findings are a step towards understanding the role of specific residues in antimicrobial activity of BMAP-28(1-18), which will facilitate design of smaller, cost-effective therapeutics and would also help prediction algorithms to expedite screening out variants of the parent peptide with greater accuracy.


Subject(s)
Anti-Infective Agents/chemistry , Bacteria/metabolism , Cell Membrane/metabolism , Proteins/chemistry , Amino Acid Sequence , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Cattle , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Circular Dichroism , Micelles , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Molecular Dynamics Simulation , Protein Structure, Secondary , Proteins/metabolism , Proteins/pharmacology , Sequence Homology, Amino Acid , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/metabolism
3.
Proc Natl Acad Sci U S A ; 107(15): 6847-51, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20351248

ABSTRACT

Repair of damage to the central nervous system (CNS) is inhibited by the presence of myelin proteins that prevent axonal regrowth. Consequently, growth inhibitors and their common receptor have been identified as targets in the treatment of injury to the CNS. Here we describe the structure of the extracellular domain of the neurite outgrowth inhibitor (Nogo) in a membrane-like environment. Isoforms of Nogo are expressed with a common C terminus containing two transmembrane (TM) helices. The ectodomain between the two TM helices, Nogo-66, is active in preventing axonal growth [GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Nature 403:439-444]. We studied the structure of Nogo-66 alone and in the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles and dodecylphosphocholine (DPC) micelles as membrane mimetics. We find that Nogo-66 is largely disordered when free in solution. However, when bound to a phosphocholine surface Nogo-66 adopts a unique, stable fold, even in the absence of TM anchors. Using paramagnetic probes and protein-DPC nuclear Overhauser effects (NOEs), we define portions of the growth inhibitor likely to be accessible on the cell surface. With these data we predict that residues (28-58) are available to bind the Nogo receptor, which is entirely consistent with functional assays. Moreover, the conformations and relative positions of side chains recognized by the receptor are now defined and provide a foundation for antagonist design.


Subject(s)
Cell Membrane/metabolism , Myelin Proteins/chemistry , Phosphorylcholine/chemistry , Receptors, Cell Surface/chemistry , Animals , Central Nervous System/metabolism , Dimyristoylphosphatidylcholine/chemistry , GPI-Linked Proteins , Magnetic Resonance Spectroscopy/methods , Mice , Models, Molecular , Molecular Conformation , Nogo Receptor 1 , Phosphorylcholine/analogs & derivatives , Protein Binding , Protein Folding , Protein Isoforms , Protein Structure, Tertiary
4.
J Biol Chem ; 283(51): 35869-77, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-18930922

ABSTRACT

The oral cavity is an environment challenged by a large variety of pathogens. Consequently, the antimicrobial peptides expressed in that environment are interesting as they evolved to defend against a broad spectrum of bacteria and fungi. Here we report the discovery of new alpha-defensins from rhesus macaque oral mucosa and determine the first alpha-defensin structure from that species. The new peptides were identified by sequencing of reverse transcriptase-PCR products obtained from oral mucosal tissues, disclosing three mucosal alpha-defensins, termed rhesus macaque oral alpha-defensins (ROADs). The peptide corresponding to fully processed ROAD-1 was synthesized, subjected to folding/oxidation conditions, and purified. ROAD-1 was active against Staphylococcus aureus, Escherichia coli, and Candida albicans in a concentration-dependent manner. We determined the structure of ROAD-1 using NMR spectroscopy and find that the synthetic peptide adopts the canonical disulfide pairing and alpha-defensin fold. The antimicrobial mechanism of defensins has been correlated with their ability to disrupt and permeabilize the cell envelope, activities that depend on the surface features of the folded peptide. Although ROAD-1 maintains the defensin fold, the oral defensin displays distinct surface features when compared with other alpha-defensin structures.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Candida albicans/growth & development , Escherichia coli/growth & development , Staphylococcus aureus/growth & development , alpha-Defensins/genetics , alpha-Defensins/pharmacology , Animals , Anti-Infective Agents/immunology , Macaca mulatta , Mouth Mucosa/immunology , Protein Folding , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Structure-Activity Relationship , alpha-Defensins/chemical synthesis , alpha-Defensins/immunology
5.
Biochemistry ; 46(37): 10722-32, 2007 Sep 18.
Article in English | MEDLINE | ID: mdl-17715945

ABSTRACT

Apolipoprotein E (apoE) is an exchangeable apolipoprotein that plays an important role in lipid/lipoprotein metabolism and cardiovascular diseases. Recent evidence indicates that apoE is also critical in several other important biological processes, including Alzheimer's disease, cognitive function, immunoregulation, cell signaling, and infectious diseases. Although the X-ray crystal structure of the apoE N-terminal domain was solved in 1991, the structural study of full-length apoE is hindered by apoE's oligomerization property. Using protein-engineering techniques, we generated a monomeric, biologically active, full-length apoE. Cross-linking experiments indicate that this mutant is nearly 95-100% monomeric even at 20 mg/mL. CD spectroscopy and guanidine hydrochloride denaturation demonstrate that the structure and stability of the monomeric mutant are identical to wild-type apoE. Monomeric and wild-type apoE display similar lipid-binding activities in dimyristoylphosphatidylcholine clearance assays and formation of reconstituted high-density lipoproteins. Furthermore, the monomeric and wild-type apoE proteins display an identical LDL receptor binding activity. Availability of this monomeric, biologically active, full-length apoE allows us to collect high quality NMR data for structural determination. Our initial NMR data of lipid-free apoE demonstrates that the N-terminal domain in the full-length apoE adopts a nearly identical structure as the isolated N-terminal domain, whereas the C-terminal domain appears to become more structured than the isolated C-terminal domain fragment, suggesting a weak domain-domain interaction. This interaction is confirmed by NMR examination of a segmental labeled apoE, in which the N-terminal domain is deuterated and the C-terminal domain is double-labeled. NMR titration experiments further suggest that the hinge region (residues 192-215) that connects apoE's N- and C-terminal domains may play an important role in mediating this domain-domain interaction.


Subject(s)
Apolipoprotein E3/chemistry , Apolipoprotein E3/metabolism , Apolipoprotein E3/isolation & purification , Circular Dichroism , Dimyristoylphosphatidylcholine/metabolism , Humans , Lipid Metabolism , Lipoproteins, HDL/ultrastructure , Magnetic Resonance Spectroscopy , Mutant Proteins/isolation & purification , Mutant Proteins/metabolism , Protein Binding , Protein Engineering , Protein Structure, Tertiary , Receptors, LDL/metabolism , Structure-Activity Relationship , Thermodynamics
6.
Biopolymers ; 63(3): 168-80, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11787005

ABSTRACT

Computational methods have played a key role in elucidating the various three-dimensional structures of oligosaccharides. Such structural information, together with other experimental data, leads to a better understanding of the role of oligosaccharide in various biological processes. The disialoside Neu5Ac-alpha2-->8-Neu5Ac appears as the terminal glycan in glycoproteins and glycolipids, and is known to play an important role in various events of cellular communication. Neurotoxins such as botulinum and tetanus require Neu5Ac-alpha2 --> 8-Neu5Ac for infecting the host. Glycoconjugates containing this disialoside and the enzymes catalyzing their biosynthesis are also regulated during cell growth, development, and differentiation. Unlike other biologically relevant disaccharides that have only two linkage bonds, the alpha2-->8-linked disialoside has four: C2-O, O-C8', C8'-C7', and C7'-C6'. The present report describes the results from nine 1 ns MD simulations of alpha2-->8-linked disialoside (Neu5Ac-alpha2-->8-Neu5Ac); simulations were run using GROMOS96 by explicitly considering the solvent molecules. Conformations around the O-C8' bond are restricted to the +sc/+ap regions due to stereochemical reasons. In contrast, conformations around the C2-O and C8'-C7' bonds were found to be largely unrestricted and all the three staggered regions are accessible. The conformations around the C7'-C6' bond were found to be in either the -sc or the anti region. These results are in excellent agreement with the available NMR and potential energy calculation studies. Overall, the disaccharide is flexible and adopts mainly two ensembles of conformations differing in the conformation around the C7'-C6' bond. The flexibility associated with this disaccharide allows for better optimization of intermolecular contacts while binding to proteins and this may partially compensate for the loss of conformational entropy that may be incurred due to disaccharide's flexibility.


Subject(s)
Disaccharides/chemistry , Disaccharides/metabolism , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/chemistry , Neuraminic Acids/metabolism , Algorithms , Carbohydrate Conformation , Carbohydrate Sequence , Computer Simulation , Gangliosides/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Protein Binding , Software , Solutions , Solvents , Thermodynamics , Torsion Abnormality
7.
Indian J Biochem Biophys ; 39(2): 87-92, 2002 Apr.
Article in English | MEDLINE | ID: mdl-22896894

ABSTRACT

A dodecylphosphocholine micelle of 86 monomers with 5776 water molecules has been simulated under NPT conditions for 3.2 ns using GROMACS2.0. The micelle was found to be very dynamic. Some of the C-C bonds, independent of their position in the DPC monomer, adopt gauche conformation and the trans <--> gauche transitions are quite frequent. An average of about 11% of the C-C bonds in the micelle are observed to be in the gauche conformation (i.e., |dihedral angle|< 120 degrees). The terminal methyl groups are randomly distributed all over the micelle whereas the nitrogen atom of phosphocholine headgroup atoms is restricted to the interface region. Some of the monomers were found to lie on the surface. The shape of micelle, influenced by the packing considerations, shows deviations from spherical shape. The phosphocholine headgroup is well solvated and there is no water penetration into the micelle core. The overall features of the micelle of 86 DPC monomers conforms to the lattice model of micelle proposed by Dill and Flory [Dill K A, Flory P J (1981) Proc Natl Acad Sci USA 78, 676-680] and is similar to DPC micelles of smaller aggregate sizes except for the positional preference of the C-C bonds for the gauche conformation and the trans<-->gauche transition times [Tieleman D P, van der Spoel D, Berendsen H J C (2000) J Phys Chem B 104, 6380-6388; Wymore T, Gao X F, Wong T C (1999) J Mol Struct (Theochem) 485-486, 195-210]. It appears that packing considerations play a predominant role in determining the shape and dynamics of the micelle.


Subject(s)
Micelles , Phosphorylcholine/analogs & derivatives , Biochemistry/methods , Carbon/chemistry , Computer Simulation , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Phosphorylcholine/chemistry , Protein Conformation , Solvents/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...