Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38541545

ABSTRACT

Undoped and Mg2+-doped ß-Ga2O3-20% In2O3 solid solution microcrystalline samples were synthesized using the high-temperature solid-state chemical reaction method to investigate the influence of native defects on structural, luminescent, and electrical properties. The synthesis process involved varying the oxygen partial pressure by synthesizing samples in either an oxygen or argon atmosphere. X-ray diffraction (XRD) analysis confirmed the monoclinic structure of the samples with the lattice parameters and unit cell volume fitting well to the general trends of the (Ga1-xInx)2O3 solid solution series. Broad emission spectra ranging from 1.5 to 3.5 eV were registered for all samples. Luminescence spectra showed violet, blue, and green emission elementary bands. The luminescence intensity was found to vary depending on the synthesis atmosphere. An argon synthesis atmosphere leads to increasing violet luminescence and decreasing green luminescence. Intense bands at about 4.5 and 5.0 eV and a low-intensity band at 3.3 eV are presented in the excitation spectra. The electrical conductivity of the samples was also determined depending on the synthesis atmosphere. The high-resistance samples obtained in an oxygen atmosphere exhibited activation energy of around 0.98 eV. Samples synthesized in an argon atmosphere demonstrated several orders of magnitude higher conductivity with an activation energy of 0.15 eV. The results suggest that the synthesis atmosphere is crucial in determining the luminescent and electrical properties of undoped ß-Ga2O3-In2O3 solid solution samples, offering the potential for various optoelectronic applications.

2.
Nanomaterials (Basel) ; 14(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38334588

ABSTRACT

The tuning of second (SHG) and third (THG) harmonic emission is studied in the model system LiNb 1-xTa xO 3 (0≤x≤1, LNT) between the established edge compositions lithium niobate (LiNbO 3, x=0, LN) and lithium tantalate (LiTaO 3, x=1, LT). Thus, the existence of optical nonlinearities of the second and third order is demonstrated in the ferroelectric solid solution system, and the question about the suitability of LNT in the field of nonlinear and quantum optics, in particular as a promising nonlinear optical material for frequency conversion with tunable composition, is addressed. For this purpose, harmonic generation is studied in nanosized crystallites of mechanochemically synthesized LNT using nonlinear diffuse reflectometry with wavelength-tunable fundamental femtosecond laser pulses from 1200 nm to 2000 nm. As a result, a gap-free harmonic emission is validated that accords with the theoretically expected energy relations, dependencies on intensity and wavelength, as well as spectral bandwidths for harmonic generation. The SHG/THG harmonic ratio ≫1 is characteristic of the ferroelectric bulk nature of the LNT nanocrystallites. We can conclude that LNT is particularly attractive for applications in nonlinear optics that benefit from the possibility of the composition-dependent control of mechanical, electrical, and/or optical properties.

3.
Inorg Chem ; 61(45): 18135-18146, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36317268

ABSTRACT

In this study, we carried out a detailed investigation of the photoluminescence of Mn4+ in Ga2O3-Al2O3 solid solutions as a function of the chemical composition, temperature, and hydrostatic pressure. For this purpose, a series of (Al1-xGax)2O3:Mn4+,Mg phosphors (x = 0, ..., 0.1.0) were synthesized and characterized for the first time. A detailed crystal structure analysis of the obtained materials was done by the powder X-ray diffraction technique. The results of the crystal structure and luminescence studies evidence the transformation of the ambient-pressure-synthesized material from the rhombohedral (α-type) to monoclinic (ß-type) phase as the Ga content exceeds 15%. Spectroscopic features of the Mn4+ deep-red emission, including the temperature-dependent emission efficiency and decay time, as well as the possibility of their tuning through chemical pressure in each of these two phases were examined. Additionally, it has been shown that the application of hydrostatic pressure of ≥19 GPa allows one to obtain a corundum-like α-Ga2O3:Mn4+ phase. The luminescence properties of this material were compared with ß-Ga2O3:Mn4+, which is normally synthesized at ambient pressure. Finally, we evaluated the possibility of application of the studied phosphor materials for low-temperature luminescence thermometry.

4.
J Phys Chem C Nanomater Interfaces ; 125(48): 26698-26710, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34925675

ABSTRACT

The possibility of band gap engineering (BGE) in RAlO3 (R = Y, La, Gd, Yb, Lu) perovskites in the context of trap depths of intrinsic point defects was investigated comprehensively using experimental and theoretical approaches. The optical band gap of the materials, E g, was determined via both the absorption measurements in the VUV spectral range and the spectra of recombination luminescence excitation by synchrotron radiation. The experimentally observed effect of E g reduction from ∼8.5 to ∼5.5 eV in RAlO3 perovskites with increasing R3+ ionic radius was confirmed by the DFT electronic structure calculations performed for RMIIIO3 crystals (R = Lu, Y, La; MIII = Al, Ga, In). The possibility of BGE was also proved by the analysis of thermally stimulated luminescence (TSL) measured above room temperature for the far-red emitting (Y/Gd/La)AlO3:Mn4+ phosphors, which confirmed decreasing of the trap depths in the cation sequence Y → Gd → La. Calculations of the trap depths performed within the super cell approach for a number of intrinsic point defects and their complexes allowed recognizing specific trapping centers that can be responsible for the observed TSL. In particular, the electron traps of 1.33 and 1.43 eV (in YAlO3) were considered to be formed by the energy level of oxygen vacancy (VO) with different arrangement of neighboring YAl and VY, while shallower electron traps of 0.9-1.0 eV were related to the energy level of YAl antisite complexes with neighboring VO or (VO + VY). The effect of the lowering of electron trap depths in RAlO3 was demonstrated for the VO-related level of the (YAl + VO + VY) complex defect for the particular case of La substituting Y.

5.
J Phys Condens Matter ; 32(24): 245802, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32186282

ABSTRACT

The present work offers an insight into the magnetic properties of Mn-rich spinel zinc manganate. Rietveld refinement reveals the formation of Zn0.67Mn2.33O4, where Zn2+ and Mn2+ ions are randomly distributed in the tetrahedral sublattice. DC and AC susceptibility measurement of Zn0.67Mn2.33O4 infers the occurrence of two kinds of transition below 11 K. Paramagnetic to ferrimagnetic transition occur at 10.7 K and ferrimagnetic to spin glass-like transition occurs at 5.8 K. The long-range canted ferrimagnetic ordering is corroborated using modified Lotgering model and calculated the exchange interaction values (J AA = 5.2 K,J AB = 5.3 K, J BB = 14.8 K). Further, the observed shift in freezing temperature with DC magnetic field obeys Almeida-Thouless behaviour and frequency dependence of AC susceptibility follows Vogel-Fulcher law. However, the complete establishment of the canonical spin glass state is denied since the manganese ions occupied at the tetrahedral site is equal to the percolation threshold (=33%). Subsequently, the observed spin glass-like behaviour (5.8 K) below Curie temperature (10.7 K) evidences the reentrant spin glass nature. Similarly, the strong frustration in Zn0.67Mn2.33O4 lattice is observed through the substantial negative value of Curie-Weiss temperature (∼-599 K) and very high frustration factor (f = 56). Overall, the chosen Zn0.67Mn2.33O4 is a highly frustrated magnetic system revealing re-entrant spin-glass behaviour.

6.
Dalton Trans ; 47(37): 12951-12963, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30151526

ABSTRACT

Phase relationship and structural behaviour in the substitutional series LaNi13-xGax and CeNi13-xGax have been studied by a combination of X-ray powder diffraction measurements, differential scanning calorimetry, electron diffraction tomography and metallographic analyses. The sequence of morphotropic phase transformations has been found in the series LaNi13-xGax resulting in five varieties of the NaZn13 structure: the cubic phase with aristotype structure at x = 2 (space group Fm3[combining macron]c, Pearson symbol cF112), two tetragonal phases at x = 2.5-4.25 (space group I4/mcm, Pearson symbol tI56-I) and 7-7.5 (space group I4/mcm, Pearson symbol tI56-II), both with an atomic arrangement of the CeNi8.5Si4.5 type and two orthorhombic phases at x = 4.5-5.75 (LaNi7In6 structure type, space group Ibam, Pearson symbol oI56) and x = 6.37-6.87 (a new derivative of the NaZn13, prototype structure, space group Fmmm, Pearson symbol oF112). The related series CeNi13-xGax shows similar behaviour. The corresponding tI56-I ↔oI56 ↔oF112 ↔tI56-II phases are formed at x = 4-4.25, 4.5-6, 6.37-6.87 and 7-7.37, respectively. In contrast to the lanthanum analogues, the phase with cubic symmetry was not found for this system. Complex twinned and multiple twinned (twinning of twins) domain structures which are revealed for the tetragonal and both orthorhombic phases clearly indicate temperature-induced polymorphic phase transitions during the formation of these phases. LaNi13-xGax samples show paramagnetic behavior, whereas the CeNi13-xGax series exhibits Curie-Weiss paramagnetism.

7.
Nanoscale Res Lett ; 12(1): 442, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28683537

ABSTRACT

Mixed holmium cobaltite-chromite HoCo0.5Cr0.5O3 with orthorhombic perovskite structure (structure type GdFeO3, space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo0.5Cr0.5O3, which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co3+ ions and insulator-metal transition occurring in HoCo0.5Cr0.5O3.

8.
Nanoscale Res Lett ; 12(1): 148, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28241672

ABSTRACT

Single-phase mixed aluminates-titanates Nd1-x Sr x Al1-x Ti x O3 (x = 0.3 ÷ 0.9) were prepared from stoichiometric amounts of constituent oxides Nd2O3, Al2O3, TiO2 and strontium carbonate SrCO3 by solid-state reaction technique in air at 1773 K. Crystal structure parameters of Nd1-x Sr x Al1-x Ti x O3 were refined by full-profile Rietveld refinement in space groups R [Formula: see text] c (x = 0.3, 0.5, 0.7 and 0.8) and Pm [Formula: see text] m (x = 0.9). Comparison of the obtained structural parameters with the literature data for the end members of the system NdAlO3 and SrTiO3 revealed formation of two kinds of solid solutions Nd1-xSrxAl1-xTixO3 with the cubic and rhombohedral perovskite structure. Morphotropic rhombohedral-to-cubic phase transition in Nd1-xSrxAl1-xTixO3 series occurs at x = 0.84. Based on the results obtained as well as the literature data for the parent compounds, the tentative phase diagram of the NdAlO3-SrTiO3 pseudo-binary system have been constructed.

9.
Nanoscale Res Lett ; 11(1): 75, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26858157

ABSTRACT

Two series of nanocrystalline powders of PrCo1 - x Fe x O3 (x = 0.1, 0.3, 0.5, 0.7 and 0.9) of high purity were obtained by sol-gel citrate method at 700 and 800 °C. The formation of continuous solid solution with an orthorhombic perovskite structure (sp. group Pbnm) was observed. A peculiarity of the PrCo1 - x Fe x O3 solid solution is the lattice parameter crossovers, which occurred at certain compositions and revealed in the pseudo-tetragonal or pseudo-cubic metric. An average crystallite size of the PrCo1 - x Fe x O3 samples estimated from the analysis of the angular dependence of the X-ray diffraction (XRD) line broadening varies between 30 and 155 nm, depending on the composition and synthesis temperature.

10.
Nanoscale Res Lett ; 11(1): 107, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26920152

ABSTRACT

Mixed ferrites Sm0.5Pr0.5FeO3 and Sm0.5Nd0.5FeO3 with orthorhombic perovskite structure isotypic with GdFeO3 were synthesized by solid-state reaction technique in air at 1473 K. Structural parameters obtained at room temperature prove a formation of continuous solid solutions in the SmFeO3-PrFeO3 and SmFeO3-NdFeO3 pseudo-binary systems. Sm0.5Pr0.5FeO3 and Sm0.5Nd0.5FeO3 show strongly anisotropic nonlinear thermal expansion: thermal expansion in the b direction is twice lower than in the a and c directions. The average linear thermal expansion coefficients of Sm0.5Pr0.5FeO3 and Sm0.5Nd0.5FeO3 in the temperature range of 298-1173 K are in the limits of (9.0-11.1) × 10(-6) K(-1), which is close to the values reported for the parent RFeO3 compounds. Subtle anomalies in the lattice expansion of Sm0.5Pr0.5FeO3 and Sm0.5Nd0.5FeO3 detected at 650-750 K reflect magnetoelastic coupling at the magnetic ordering temperature T N.

11.
Nanoscale Res Lett ; 11(1): 17, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26759353

ABSTRACT

Single-phase mixed aluminates-titanates Pr1-x Sr x Al1-x Ti x O3 (x = 0.1, 0.2, 0.3, 0.5, 0.7) with rhombohedral perovskite structure were prepared by solid-state reaction technique at 1823-1873 K. Morphotropic rhombohedral-to-cubic phase transition in Pr1-x Sr x Al1-x Ti x O3 series is predicted to occur at x = 0.88. The temperature-induced structural phase transition R [Formula: see text] с - Pm [Formula: see text] m in Pr0.5Sr0.5Al0.5Ti0.5O3, detected at 930 K by in situ high-temperature X-ray synchrotron powder diffraction, occurs at considerably lower temperature as the corresponding transformation in the parent compound PrAlO3 (1770 K). Such remarkable drop of the transition temperature is explained by gradual decrease of the perovskite structure deformation in the Pr1-x Sr x Al1-x Ti x O3 series with increasing Sr and Ti contents as a consequence of the increasing Goldschmidt tolerance factor. For Pr0.3Sr0.7Al0.3Ti0.7O3 phase, a sequence of the low-temperature phase transformation R [Formula: see text] с - Immb(C2/m) - I4/mcm was detected.

12.
Chem Commun (Camb) ; 47(42): 11695-6, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-21952640

ABSTRACT

Nanoporous titanium borophosphates have been synthesized which exhibit a rigid gainesite-type framework of polyhedra. The open-framework character is supported by the reversibility of de- and rehydration processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...