Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683652

ABSTRACT

MXenes are a family of two-dimensional (2D) composite materials based on transition metal carbides, nitrides and carbonitrides that have been attracting attention since 2011. Combination of electrical and mechanical properties with hydrophilicity makes them promising materials for biomedical applications. This review briefly discusses methods for the synthesis of MXenes, their potential applications in medicine, ranging from sensors and antibacterial agents to targeted drug delivery, cancer photo/chemotherapy, tissue engineering, bioimaging, and environmental applications such as sensors and adsorbents. We focus on in vitro and in vivo toxicity and possible mechanisms. We discuss the toxicity analogies of MXenes and other 2D materials such as graphene, mentioning the greater biocompatibility of MXenes. We identify existing barriers that hinder the formation of objective knowledge about the toxicity of MXenes. The most important of these barriers are the differences in the methods of synthesis of MXenes, their composition and structure, including the level of oxidation, the number of layers and flake size; functionalization, test concentrations, duration of exposure, and individual characteristics of biological test objects Finally, we discuss key areas for further research that need to involve new methods of nanotoxicology, including predictive computational methods. Such studies will bring closer the prospect of widespread industrial production and safe use of MXene-based products.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407258

ABSTRACT

This review describes methods and results of studying the mechanical properties of wood at all scales: from nano- to macro-scale. The connection between the mechanical properties of material and its structure at all these levels is explored. It is shown that the existing size effects in the mechanical properties of wood, in a range of the characteristic sizes of the structure of about six orders of magnitude, correspond to the empirical Hall-Petch relation. This "law" was revealed more than 60 years ago in metals and alloys and later in other materials. The nature, as well as the particular type of the size dependences in different classes of materials can vary, but the general trend, "the smaller the stronger", remains true both for wood and for other cellulose-containing materials. The possible mechanisms of the size effects in wood are being discussed. The correlations between the mechanical and thermophysical properties of wood are described. Several examples are used to demonstrate the possibility to forecast the macromechanical properties of wood by means of contactless thermographic express methods based on measuring temperature diffusivity. The research technique for dendrochronological and dendroclimatological studies by means of the analysis of microhardness and Young's modulus radial dependences in annual growth rings is described.

3.
Materials (Basel) ; 15(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35057348

ABSTRACT

This paper describes an experimental study of the relationships between thermal diffusivity and mechanical characteristics including Brinell hardness, microhardness, and Young's modulus of common pine (Pinus sylvestris L.), pedunculate oak (Quercus robur L.), and small-leaf lime (Tilia cordata Mill.) wood. A dependence of Brinell hardness and thermal diffusivity tensor components upon humidity for common pine wood is found. The results of the measurement of Brinell hardness, microhardness, Young's modulus, and main components of thermal diffusivity tensor for three perpendicular cuts are found to be correlated. It is shown that the mechanical properties correlate better with the ratio of longitude to transversal thermal diffusivity coefficients than with the respective individual absolute values. The mechanical characteristics with the highest correlation with the abovementioned ratio are found to be the ratio of Young's moduli in longitude and transversal directions. Our technique allows a comparative express assessment of wood mechanical properties by means of a contactless non-destructive measurement of its thermal properties using dynamic thermal imaging instead of laborious and material-consuming destructive mechanical tests.

4.
Nanomaterials (Basel) ; 11(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513948

ABSTRACT

Silver nanoparticles (AgNPs) are the most widely studied antimicrobial nanomaterials. However, their use in biomedicine is currently limited due to the availability of data that prove the nanosilver toxicity associated primarily with oxidative stress development in mammalian cells. The surface modification of AgNPs is a potent technique of improvement of their biocompatibility. The synthetic or natural compounds that combine zero or low toxicity towards human and animal organisms with inherent antimicrobial properties are the most promising stabilizing agents, their use would also minimize the risks of microorganisms developing resistance to silver-based materials. We used a simple technique to obtain 30-60 nm AgNPs stabilized with benzyldimethyl[3-myristoylamine)-propyl]ammonium chloride monohydrate (BAC)-a well-known active ingredient of many antibacterial drugs. The objective of the study was to assess the AgNPs-BAC entero- and hepatotoxicity to CBF1 mice upon enteral administration. The animals were exposed to 0.8-7.5 mg/kg doses of AgNPs-BAC in the acute and to 0.05-2.25 mg/kg doses of AgNPs-BAC in the subacute experiments. No significant entero- and hepatotoxic effects following a single exposure to doses smaller than 4 mg/kg were detected. Repeated exposure to the doses of AgNPs-BAC below 0.45 mg/kg and to the doses of BAC below 0.5 mg/kg upon enteral administration also led to no adverse effects. During the acute experiment, the higher AgNPs-BAC dose resulted in increased quantities of aminotransferases and urea, as well as the albumin-globulin ratio shift, which are indicative of inflammatory processes. Besides, the relative mass of the liver of mice was smaller compared to the control. During the subacute experiment, the groups treated with the 0.25-2.25 mg/kg dose of AgNPs-BAC had a lower weight gain rate compared to the control, while the groups treated with the 2.25 mg/kg dose of AgNPs-BAC showed statistically significant variations in the blood serum transaminases activity, which indicated hepatosis. It should be noted that the spleen and liver of the animals from the groups treated with the 0.45 and 2.25 mg/kg dose of AgNPs-BAC were more than two times smaller compared to the control. In the intestines of some animals from the group treated with the 2.25 mg/kg dose of AgNPs-BAC small areas of hyperemia and enlarged Peyer's patches were observed. Histological examination confirmed the initial stages of the liver and intestinal wall inflammation.

5.
Mater Sci Eng C Mater Biol Appl ; 62: 152-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26952409

ABSTRACT

Silver nanoparticles (AgNPs) are well-known bactericidal agents. However, information about the influence of AgNPs on the morphometric parameters and biochemical status of most important agricultural crops is limited. The present study reports the influence of AgNPs stabilized with cationic polymer polyhexamethylene biguanide hydrochloride (PHMB) on growth, development, and biochemical status of fodder beet Beta vulgaris L. under laboratory and greenhouse conditions. PHMB-stabilized AgNPs were obtained via sodium borohydride reduction of silver nitrate in an aqueous solution. The average diameter of thus prepared AgNPs was 10 nm. It appears that the results of experiments with laboratory-grown beets in the nanosilver-containing medium, where germination of seeds and growth of roots were suppressed, do not correlate with the results of greenhouse experiments. The observed growth-stimulating action of PHMB-stabilized AgNPs can be explained by the change of activity of oxidases and, consequently, by the change of auxins amount in plant tissues. In beets grown in the presence of PHMB-stabilized AgNPs no negative deviations of biological parameters from normal values were registered. Furthermore, the SEM/EDS examination revealed no presence of silver in the tissues of the studied plants.


Subject(s)
Beta vulgaris/growth & development , Biguanides/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Beta vulgaris/drug effects , Beta vulgaris/metabolism , Germination/drug effects , Indoleacetic Acids/metabolism , Metal Nanoparticles/toxicity , Microscopy, Electron, Scanning , Oxidoreductases/metabolism , Particle Size , Plant Proteins/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Silver Nitrate/chemistry , X-Ray Diffraction
6.
Biomed Res Int ; 2015: 412530, 2015.
Article in English | MEDLINE | ID: mdl-26339611

ABSTRACT

Suspensions of Cu nanoparticles are promising for creating the new class of alternative antimicrobial products. In this study we examined copper nanoparticles of various sizes obtained by the method of wire electric explosion: nanopowder average size 50 nm (Cu 50) and 100 nm (Cu 100). The paper presents the complex study of the influence of physicochemical properties such as particle size and concentration of the freshly prepared and 24-hour suspensions of Cu nanoparticles in distilled water and physiological solution upon their toxicity to bacteria E. coli M-17. Ionic solution of Cu(2+) and sodium dichloroisocyanurate was used for comparison study. It has been shown that decrease in the nanoparticle size leads to changes in the correlation between toxicity and concentration as toxicity peaks are observed at low concentrations (0.0001⋯0.01 mg/L). It has been observed that antibacterial properties of Cu 50 nanoparticle suspensions are ceased after 24-hour storage, while for Cu 100 suspensions no correlation between antibacterial properties and storage time has been noted. Cu 100 nanoparticle suspensions at 10 mg/L concentration display higher toxicity at substituting physiological solution for water than Cu 50 suspensions. Dependence of the toxicity on the mean particle aggregates size in suspension was not revealed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Copper/pharmacology , Escherichia coli/drug effects , Metal Nanoparticles/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Copper/adverse effects , Copper/chemistry , Humans , Ions/chemistry , Metal Nanoparticles/adverse effects , Metal Nanoparticles/chemistry , Particle Size , Suspensions/chemistry , Suspensions/pharmacology , Triazines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...