Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(4)2024 04 14.
Article in English | MEDLINE | ID: mdl-38675946

ABSTRACT

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Subject(s)
Chickens , Coronavirus Infections , Gene Expression Profiling , Infectious bronchitis virus , Poultry Diseases , Trachea , Animals , Trachea/virology , Trachea/immunology , Chickens/virology , Infectious bronchitis virus/physiology , Infectious bronchitis virus/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Poultry Diseases/genetics , Epithelial Cells/virology , Epithelial Cells/immunology , Transcriptome , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Virus Replication , Specific Pathogen-Free Organisms
2.
Iran J Pharm Res ; 19(3): 494-508, 2020.
Article in English | MEDLINE | ID: mdl-33680047

ABSTRACT

One of main herbal compounds with neuroprotective effects is curcumin. Lead poisoning cause neurodegeneration effect but its clear mechanism remains unknown. The current study evaluates the role of Akt/GSK3 signaling pathway in mediating the neuroprotective effects of curcumin against lead -induced neurodegeneration in rats. Sixty adult male rats were divided to: Group 1 and 2 receiving normal saline and drinking water containing 0.075% of lead acetate. Groups 3, 4, 5, and 6 were treated concurrently with lead acetate (0.075% in drinking water) and Curcumin (10, 20, 40, and 80 mg/kg I.P, respectively). Morris water maze (MWM) was used to evaluate cognitive activity, Hippocampal oxidative, anti-oxidant, as well as inflammatory and apoptotic factors and also Akt and GSK3 protein levels were studied. We found that lead poisoning disturbed the learning and memory and simultaneous treatment with Curcumin reduced the lead -induced cognition disturbances. In addition, lead acetate treatment increased lipid peroxidation and the levels of IL-1ß, TNF-α , Bax, GSK3 (total and phosphorylated) while reducing reduced form of GSH, Bcl-2, and Akt3 (total and phosphorylated) levels in the hippocampus. Lead also reduced the activity of SOD, GPx, and GR in the hippocampus. In contrast, various doses of Curcumin attenuated lead -induced apoptosis, oxidative stress and inflammation; while elevating P-Akt and reduced of GSK3 levels. Thus, Curcumin via mediation of Akt/GSK3 signaling pathway confers neuroprotection against lead-induced neurodegeneration in hippocampus.

3.
Anim Nutr ; 5(1): 63-67, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30899811

ABSTRACT

The objective of this study was to examine the effects of dietary carbohydrases (xylanase and ß-glucanase; XG), individually or in combination with phytase or acidifier on the growth performance, carcass attributes, intestinal microbial counts and morphology in broiler chickens fed a wheat-based diet. A total of 240 one-day-old male broiler chicks were randomly allocated into 4 treatment groups with 6 replicates of 10 birds each. The dietary treatments included a basal diet, the basal diet with an enzyme complex containing XG, XG plus a microbial phytase (XG + P) and XG plus acidifier (XG + A). The results indicated that feed conversion ratio (FCR) was improved in broiler chickens which received XG + A during the entire production period (1 to 35 d) of the trial (P < 0.05). The broiler chickens fed XG + P had lower feed intake compared with the control group at 29 to 35 d of age. The experimental treatments had no effect on the body weight gain of broiler chickens. In carcass traits, except for spleen (P < 0.05), the dietary treatments had no effects on the carcass characteristics of broiler chickens. The birds which received diets supplemented with XG and XG + A had a lower weight of the spleen compare with the control. Addition of XG in combination with phytase (XG + P) resulted in a decrease in ileal enumeration of Escherichia coli at 35 d of age (P < 0.05). However, dietary treatments did not alter the population of ileal Lactobacilli in broiler chickens. Supplementing carbohydrases with phytase and acidifier (XG + P and XG + A) significantly increased the intestinal villus length at 35 d of age (P < 0.05). In conclusion, the present study demonstrated that supplementation of the wheat-based diet with a combination with carbohydrases and acidifier (XG + A) improves FCR in broiler chickens. Furthermore, combinations of carbohydrases with phytase (XG + P) and with acidifier (XG + A) decrease the E. coli counts and increase the villus length in broiler chickens.

SELECTION OF CITATIONS
SEARCH DETAIL
...