Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 260(1): 28, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878167

ABSTRACT

MAIN CONCLUSION: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.


Subject(s)
Chloroplasts , Fibroblast Growth Factor 2 , Nicotiana , Plants, Genetically Modified , Recombinant Proteins , Nicotiana/genetics , Nicotiana/metabolism , Humans , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Chloroplasts/metabolism , Chloroplasts/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , HEK293 Cells , Cell Proliferation , Plant Leaves/metabolism , Plant Leaves/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...