Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Stroke Res Treat ; 2023: 3682898, 2023.
Article in English | MEDLINE | ID: mdl-36936523

ABSTRACT

Hand impairment is a common consequence of stroke, resulting in long-term disability and reduced quality of life. Recovery may be augmented through self-directed therapy activities at home, complemented by the use of rehabilitation devices such as peripheral sensory stimulation. The objective of this study was to determine the effect of adherence to self-directed therapy and the use of TheraBracelet (subsensory random-frequency vibratory stimulation) on hand function for stroke survivors. In a double-blind, randomized controlled pilot trial, 12 chronic stroke survivors were assigned to a treatment or control group (n = 6/group). All participants were instructed to perform 200 repetitions of therapeutic hand tasks 5 days/week while wearing a wrist-worn device 8 hours/day for 4 weeks. The treatment group received TheraBracelet vibration from the device, while the control group received no vibration. Home task repetition adherence and device wear logs, as well as hand function assessment (Stroke Impact Scale Hand domain), were obtained weekly. Repetition adherence was comparable between groups but varied among participants. Participants wore the device to a greater extent than adhering to completing repetitions. A linear mixed model analysis showed a significant interaction between repetition and group (p = 0.01), with greater adherence resulting in greater hand function change for the treatment group (r = 0.94; R 2 = 0.88), but not for the control group. Secondary analysis revealed that repetition adherence was greater for those with lower motor capacity and greater self-efficacy at baseline. This pilot study suggests that adherence to self-directed therapy at home combined with subsensory stimulation may affect recovery outcomes in stroke survivors. This trial is registered with NCT04026399.

2.
OTJR (Thorofare N J) ; 43(4): 702-709, 2023 10.
Article in English | MEDLINE | ID: mdl-36757086

ABSTRACT

A peripheral sensory stimulation named TheraBracelet has recently been shown to have a potential to improve gross manual dexterity following stroke. Upper limb function requires both reach and grasp. It is unknown whether TheraBracelet affects one more than other. The objective of this study was to determine whether TheraBracelet improves reaching versus grasping. In a pilot randomized controlled trial, persons with stroke received TheraBracelet (treatment) or no stimulation (control) during task practice therapy (n = 6/group). Effects of TheraBracelet on reaching versus grasping were determined using breakdown of movement times in the Box and Block Test video recordings. Improvements in movement times for the treatment compared with control group were more pronounced for grasping than for reaching at both post and follow-up time points. TheraBracelet may be beneficial for persons with grasping deficits. This knowledge can guide clinicians for targeted use of TheraBracelet, resulting in effective implementation of the new treatment.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Stroke Rehabilitation/methods , Recovery of Function/physiology , Upper Extremity , Hand Strength/physiology , Treatment Outcome
3.
Brain Commun ; 4(4): fcac191, 2022.
Article in English | MEDLINE | ID: mdl-35938072

ABSTRACT

This study investigated the effect of using subthreshold vibration as a peripheral sensory stimulation during therapy on cortical activity. Secondary analysis of a pilot triple-blinded randomized controlled trial. Twelve chronic stroke survivors underwent 2-week upper-extremity task-practice therapy. Half received subthreshold vibratory stimulation on their paretic wrist (treatment group) and the other half did not (control). EEG connectivity and event-related de-/resynchronization for the sensorimotor network during hand grip were examined at pre-intervention, post-intervention and follow-up. Statistically significant group by time interactions were observed for both connectivity and event-related spectral perturbation. For the treatment group, connectivity increased at post-intervention and decreased at follow-up. Event-related desynchronization decreased and event-related resynchronization increased at post-intervention, which was maintained at follow-up. The control group had the opposite trend for connectivity and no change in event-related spectral perturbation. The stimulation altered cortical sensorimotor activity. The findings complement the clinical results of the trial in which the treatment group significantly improved gross manual dexterity while the control group did not. Increased connectivity in the treatment group may indicate neuroplasticity for motor learning, while reduced event-related desynchronization and increased event-related resynchronization may indicate lessened effort for grip and improved inhibitory control. EEG may improve understanding of neural processes underlying motor recovery.

4.
Neurorehabil Neural Repair ; 36(4-5): 255-268, 2022 04.
Article in English | MEDLINE | ID: mdl-35311412

ABSTRACT

BACKGROUND: Improved ability to predict patient recovery would guide post-stroke care by helping clinicians personalize treatment and maximize outcomes. Electroencephalography (EEG) provides a direct measure of the functional neuroelectric activity in the brain that forms the basis for neuroplasticity and recovery, and thus may increase prognostic ability. OBJECTIVE: To examine evidence for the prognostic utility of EEG in stroke recovery via systematic review/meta-analysis. METHODS: Peer-reviewed journal articles that examined the relationship between EEG and subsequent clinical outcome(s) in stroke were searched using electronic databases. Two independent researchers extracted data for synthesis. Linear meta-regressions were performed across subsets of papers with common outcome measures to quantify the association between EEG and outcome. RESULTS: 75 papers were included. Association between EEG and clinical outcomes was seen not only early post-stroke, but more than 6 months post-stroke. The most studied prognostic potential of EEG was in predicting independence and stroke severity in the standard acute stroke care setting. The meta-analysis showed that EEG was associated with subsequent clinical outcomes measured by the Modified Rankin Scale, National Institutes of Health Stroke Scale, and Fugl-Meyer Upper Extremity Assessment (r = .72, .70, and .53 from 8, 13, and 12 papers, respectively). EEG improved prognostic abilities beyond prediction afforded by standard clinical assessments. However, the EEG variables examined were highly variable across studies and did not converge. CONCLUSIONS: EEG shows potential to predict post-stroke recovery outcomes. However, evidence is largely explorative, primarily due to the lack of a definitive set of EEG measures to be used for prognosis.


Subject(s)
Stroke Rehabilitation , Stroke , Electroencephalography , Humans , Prognosis , Recovery of Function , Stroke/diagnosis , Upper Extremity
6.
OTJR (Thorofare N J) ; 42(1): 30-39, 2022 01.
Article in English | MEDLINE | ID: mdl-34496711

ABSTRACT

Subthreshold vibratory stimulation to the paretic wrist has been shown to prime the sensorimotor cortex and improve 2-week upper extremity (UE) therapy outcomes. The objective of this work was to determine feasibility, safety, and preliminary efficacy of the stimulation over a typical 6-week therapy duration. Four chronic stroke survivors received stimulation during 6-week therapy. Feasibility/safety/efficacy were assessed at baseline, posttherapy, and 1-month follow-up. For feasibility, all participants wore the device throughout therapy and perceived the stimulation comfortable/safe. Regarding safety, no serious/moderate intervention-related adverse events occurred. For efficacy, all participants improved in Wolf Motor Function Test and UE use in daily living based on accelerometry and stroke impact scale. Mean improvements at posttherapy/follow-up were greater than the minimal detectable change/clinically important difference and other trials with similar therapy without stimulation. In conclusion, the stimulation was feasible/safe for 6-week use. Preliminary efficacy encourages a larger trial to further evaluate the stimulation as a therapy adjunct.


Subject(s)
Stroke Rehabilitation , Stroke , Accelerometry , Humans , Recovery of Function , Treatment Outcome , Upper Extremity
7.
NeuroRehabilitation ; 50(1): 105-113, 2022.
Article in English | MEDLINE | ID: mdl-34776421

ABSTRACT

BACKGROUND: Uncertain prognosis presents a challenge for therapists in determining the most efficient course of rehabilitation treatment for individual patients. Cortical Sensorimotor network connectivity may have prognostic utility for upper extremity motor improvement because the integrity of the communication within the sensorimotor network forms the basis for neuroplasticity and recovery. OBJECTIVE: To investigate if pre-intervention sensorimotor connectivity predicts post-stroke upper extremity motor improvement following therapy. METHODS: Secondary analysis of a pilot triple-blind randomized controlled trial. Twelve chronic stroke survivors underwent 2-week task-practice therapy, while receiving vibratory stimulation for the treatment group and no stimulation for the control group. EEG connectivity was obtained pre-intervention. Motor improvement was quantified as change in the Box and Block Test from pre to post-therapy. The association between ipsilesional sensorimotor connectivity and motor improvement was examined using regression, controlling for group. For negative control, contralesional/interhemispheric connectivity and conventional predictors (initial clinical motor score, age, time post-stroke, lesion volume) were examined. RESULTS: Greater ipsilesional sensorimotor alpha connectivity was associated with greater upper extremity motor improvement following therapy for both groups (p < 0.05). Other factors were not significant. CONCLUSION: EEG connectivity may have a prognostic utility for individual patients' upper extremity motor improvement following therapy in chronic stroke.


Subject(s)
Stroke Rehabilitation , Stroke , Electroencephalography , Humans , Neuronal Plasticity , Recovery of Function , Upper Extremity
8.
Neurol Neurorehabilit ; 4(3): 1-4, 2022.
Article in English | MEDLINE | ID: mdl-36780248

ABSTRACT

Sensory impairment may impact individual stroke survivors' motor recovery as well as their response to peripheral sensory stimulation treatment. The objective of this study was to determine the effect of sensory impairment level of individual stroke survivors on motor improvement with therapy and peripheral sensory stimulation. A secondary analysis of a pilot triple-blind randomized controlled trial was used. Twelve chronic stroke survivors were randomly assigned to the treatment group receiving peripheral sensory stimulation or the control group receiving no stimulation during 2-week hand task practice therapy. Sensory impairment level was quantified as the pre-intervention sensory threshold. Motor improvement was assessed as change in the Box and Block Test score from pre- to post-intervention. The association between sensory impairment level and motor improvement was examined using a regression analysis, accounting for groups. This study found that participants with better sensation (i.e., with lower sensory threshold) had better motor improvement than patients with worse sensation (i.e., with higher sensory threshold). Sensory impairment level did not alter the effect of peripheral sensory stimulation. These findings suggest that the level of sensory impairment may predict recovery potentials and direct rehabilitation treatment for stroke survivors.

9.
Transl Stroke Res ; 11(2): 204-213, 2020 04.
Article in English | MEDLINE | ID: mdl-31444692

ABSTRACT

Peripheral sensory stimulation augments post-stroke upper extremity rehabilitation outcomes. Most sensory stimulations interfere with natural hand tasks and the stimulation duration is limited. We developed TheraBracelet, low-level random-frequency vibration applied via a wristwatch, to enable stimulation during hand tasks and potentially extend stimulation durations. To determine safety of prolonged exposure to TheraBracelet. Single-site double-blind crossover randomized controlled trial. Chronic stroke survivors were instructed to wear a device on the affected wrist for > 8 h/day everyday for 2 months while coming to the laboratory weekly for evaluations, with a 2-week break between each month. The device applied vibration at 60% and 1% of the sensory threshold for the real and sham month, respectively. The order of the real and sham months was randomized/balanced. Adverse events (AEs) were assessed weekly, including worsening of hand sensation, dexterity, grip strength, pain, or spasticity and occurrence of skin irritation or swelling. Device-related AE rates were compared between the real and sham month. Twenty-five participants completed the study. Six participants (24%) experienced mild AEs involving worsened sensory scores that may be related to the intervention with reasonable possibility. Two experienced them in the real stimulation month only, 3 in the sham month only, and 1 in both months. Therefore, less participants experienced device-related AEs in the real than sham month. Daily stimulation using the device for a month is safe for chronic stroke survivors. Future studies examining the efficacy of pairing TheraBracelet with therapy for increasing neurorehabilitation outcomes are a logical next step. Trial registration: NCT03318341.


Subject(s)
Stroke Rehabilitation/methods , Wearable Electronic Devices , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Physical Stimulation/instrumentation , Physical Stimulation/methods , Safety , Stroke Rehabilitation/adverse effects , Treatment Outcome , Vibration , Wearable Electronic Devices/adverse effects , Wrist
10.
Restor Neurol Neurosci ; 38(1): 11-22, 2020.
Article in English | MEDLINE | ID: mdl-31609714

ABSTRACT

BACKGROUND: Bilateral priming, device assisted bilateral symmetrical wrist flexion/extension, is a noninvasive neuromodulation technique that can be used in the clinic. OBJECTIVE: We examined the additive effect of bilateral motor priming and task specific training in individuals with severe upper limb hemiparesis. METHODS: This is a parallel assignment, single-masked, randomized exploratory pilot study with three timepoints (pre-/post-intervention and follow up). Participants received either bilateral motor priming or health care education followed by task specific training. Sixteen participants who were at least 6 months post-stroke and had a Fugl Meyer Upper Extremity (FMUE) score between 23 and 38 were randomized. Our primary and secondary measures were Chedoke Arm & Hand Activity Index 9 (CAHAI-9) and the FMUE respectively. We determined changes in interhemispheric inhibition using transcranial magnetic stimulation. We hypothesized that improvement in the priming group would persist at follow up. RESULTS: There was no between-group difference in the CAHAI. The improvement in the FMUE was significantly greater in the experimental group at follow up (t = 2.241, p = 0.045). CONCLUSIONS: Both groups improved in the CAHAI. There was a significant between-group difference in the secondary outcome measure (FMUE) where the bilateral priming group had an average increase of 10 points from pre-intervention to follow up.


Subject(s)
Motor Activity/physiology , Paresis/therapy , Stroke Rehabilitation , Stroke/therapy , Upper Extremity/physiopathology , Aged , Female , Humans , Male , Middle Aged , Paresis/physiopathology , Pilot Projects , Recovery of Function/physiology , Stroke/complications , Stroke/physiopathology , Stroke Rehabilitation/methods , Transcranial Magnetic Stimulation/methods , Treatment Outcome , Upper Extremity/physiology
11.
Phys Ther ; 99(3): 319-328, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30690609

ABSTRACT

BACKGROUND: Peripheral sensory stimulation has been used in conjunction with upper extremity movement therapy to increase therapy-induced motor gains in patients with stroke. The limitation is that existing sensory stimulation methods typically interfere with natural hand tasks and thus are administered prior to therapy, requiring patients' time commitment. To address this limitation, we developed TheraBracelet. This novel stimulation method provides subthreshold (ie, imperceptible) vibratory stimulation to the wrist and can be used during hand tasks/therapy without interfering with natural hand tasks. OBJECTIVE: The objective was to determine the feasibility of using TheraBracelet during therapy to augment motor recovery after stroke. DESIGN: The design was a triple-blinded pilot randomized controlled trial. METHODS: Twelve chronic stroke survivors were assigned to the treatment or control group. All participants completed 2-hour task practice therapy sessions thrice weekly for 2 weeks. Both groups wore a small vibrator on the paretic wrist, which was turned on to provide TheraBracelet stimulation for the treatment group and turned off for the control group to provide sham stimulation. Outcome measures (Box and Block Test [BBT] and Wolf Motor Function Test [WMFT]) were obtained at baseline, 6 days after therapy, and at follow-up 19 days after therapy. RESULTS: The intervention was feasible with no adverse events. The treatment group significantly improved their BBT scores after therapy and at follow-up compared with baseline, whereas the control group did not. For WMFT, the group × time interaction was short of achieving significance. Large effect sizes were obtained (BBT d = 1.43, WMFT d = 0.87). No indication of desensitization to TheraBracelet stimulation was observed. LIMITATIONS: The limitation was a small sample size. CONCLUSIONS: TheraBracelet could be a promising therapy adjuvant for upper extremity recovery after stroke.


Subject(s)
Electric Stimulation Therapy , Stroke Rehabilitation/methods , Task Performance and Analysis , Upper Extremity/physiopathology , Arm/physiopathology , Female , Hand/physiopathology , Humans , Male , Middle Aged , Pilot Projects , Recovery of Function
SELECTION OF CITATIONS
SEARCH DETAIL
...