Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 608, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36739289

ABSTRACT

Genetically encoded Ca2+ indicators (GECIs) are widely used to measure neural activity. Here, we explore the use of systemically administered PHP.eB AAVs for brain-wide expression of GECIs and compare the expression properties to intracerebrally injected AAVs in male mice. We show that systemic administration is a promising strategy for imaging neural activity. Next, we establish the use of EE-RR- (soma) and RPL10a (Ribo) soma-targeting peptides with the latest jGCaMP and show that EE-RR-tagged jGCaMP8 gives rise to strong expression but limited soma-targeting. In contrast, Ribo-tagged jGCaMP8 lacks neuropil signal, but the expression rate is reduced. To combat this, we modified the linker region of the Ribo-tag (RiboL1-). RiboL1-jGCaMP8 expresses faster than Ribo-jGCaMP8 but remains too dim for reliable use with systemic virus administration. However, intracerebral injections of the RiboL1-tagged jGCaMP8 constructs provide strong Ca2+ signals devoid of neuropil contamination, with remarkable labeling density.


Subject(s)
Calcium , Neurons , Mice , Animals , Male , Calcium/metabolism , Neurons/metabolism , Neuropil/metabolism , Diagnostic Imaging , Genetic Vectors/genetics
2.
Exp Neurol ; 337: 113536, 2021 03.
Article in English | MEDLINE | ID: mdl-33264635

ABSTRACT

The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.


Subject(s)
Acetylcysteine/analogs & derivatives , Antioxidants/therapeutic use , DNA Polymerase gamma/genetics , Dopaminergic Neurons/drug effects , Induced Pluripotent Stem Cells/drug effects , Mitochondrial Diseases/drug therapy , Oxidative Stress/drug effects , Acetylcysteine/therapeutic use , Action Potentials , Cellular Senescence/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex I/metabolism , Excitatory Postsynaptic Potentials , Humans , Membrane Potential, Mitochondrial/drug effects , Sodium Channels/metabolism
3.
EMBO Mol Med ; 12(10): e12146, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32840960

ABSTRACT

Mutations in POLG disrupt mtDNA replication and cause devastating diseases often with neurological phenotypes. Defining disease mechanisms has been hampered by limited access to human tissues, particularly neurons. Using patient cells carrying POLG mutations, we generated iPSCs and then neural stem cells. These neural precursors manifested a phenotype that faithfully replicated the molecular and biochemical changes found in patient post-mortem brain tissue. We confirmed the same loss of mtDNA and complex I in dopaminergic neurons generated from the same stem cells. POLG-driven mitochondrial dysfunction led to neuronal ROS overproduction and increased cellular senescence. Loss of complex I was associated with disturbed NAD+ metabolism with increased UCP2 expression and reduced phosphorylated SirT1. In cells with compound heterozygous POLG mutations, we also found activated mitophagy via the BNIP3 pathway. Our studies are the first that show it is possible to recapitulate the neuronal molecular and biochemical defects associated with POLG mutation in a human stem cell model. Further, our data provide insight into how mitochondrial dysfunction and mtDNA alterations influence cellular fate determining processes.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , DNA Polymerase gamma/genetics , DNA, Mitochondrial/genetics , Humans , Mutation , Phenotype
4.
Cell Tissue Res ; 380(1): 15-30, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31925525

ABSTRACT

Mitochondria are the primary generators of ATP in eukaryotic cells through the process of oxidative phosphorylation. Mitochondria are also involved in several other important cellular functions including regulation of intracellular Ca2+, cell signaling and apoptosis. Mitochondrial dysfunction causes disease and since it is not possible to perform repeated studies in humans, models are essential to enable us to investigate the mechanisms involved. Recently, the discovery of induced pluripotent stem cells (iPSCs), made by reprogramming adult somatic cells (Takahashi and Yamanaka 2006; Yamanaka and Blau 2010), has provided a unique opportunity for studying aspects of disease mechanisms in patient-specific cells and tissues. Reprogramming cells to neuronal lineage such as neural progenitor cells (NPCs) generated from the neural induction of reprogrammed iPSCs can thus provide a useful model for investigating neurological disease mechanisms including those caused by mitochondrial dysfunction. In addition, NPCs display a huge clinical potential in drug screening and therapeutics.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Mitochondrial Diseases/genetics , Animals , Cells, Cultured , Disease Models, Animal , Humans , Mice , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL