Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Phys Med Biol ; 67(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36096096

ABSTRACT

Objective. To review the currently available data on beam quality correction factors,kQ,for ionization chambers in clinical proton beams and derive their current best estimates for the updated recommendations of the IAEA TRS-398 Code of Practice.Approach. The reviewed data come from 20 publications from whichkQvalues can be derived either directly from calorimeter measurements, indirectly from comparison with other chambers or from Monte Carlo calculated overall chamber factors,fQ.For cylindrical ionization chambers, a distinction is made between data obtained in the centre of a spread-out Bragg peak and those obtained in the plateau region of single-energy fields. For the latter, the effect of depth dose gradients has to be considered. To this end an empirical model for previously published displacement correction factors for single-layer scanned beams was established, while for unmodulated scattered beams experimental data were used. From all the data, chamber factors,fQ,and chamber perturbation correction factors,pQ,were then derived and analysed.Main results. The analysis showed that except for the beam quality dependence of the water-to-air mass stopping power ratio and, for cylindrical ionization chambers in unmodulated beams, of the displacement correction factor, there is no remaining beam quality dependence of the chamber perturbation correction factorspQ.Based on this approach, average values of the beam quality independent part of the perturbation factors were derived to calculatekQvalues consistent with the data in the literature.Significance. The resulting data from this analysis are current best estimates ofkQvalues for modulated scattered beams and single-layer scanned beams used in proton therapy. Based on this, a single set of harmonized values is derived to be recommended in the update of IAEA TRS-398.


Subject(s)
Protons , Radiometry , Monte Carlo Method , Radiometry/methods , Relative Biological Effectiveness , Water
2.
Z Med Phys ; 31(2): 145-153, 2021 May.
Article in English | MEDLINE | ID: mdl-33712295

ABSTRACT

PURPOSE: An independent dosimetry audit based on end-to-end testing of the entire chain of radiation therapy delivery is highly recommended to ensure consistent treatments among proton therapy centers. This study presents an auditing methodology developed by the MedAustron Ion Beam Therapy Center (Austria) in collaboration with the National Physical Laboratory (UK) and audit results for five scanned proton beam therapy facilities in Europe. METHODS: The audit procedure used a homogeneous and an anthropomorphic head phantom. The phantoms were loaded either with an ionization chamber or with alanine pellets and radiochromic films. Homogeneously planned doses of 10Gy were delivered to a box-like target volume in the homogeneous phantom and to two clinical scenarios with increasing complexity in the head phantom. RESULTS: For all tests the mean of the local differences of the absolute dose to water determined with the alanine pellets compared to the predicted dose from the treatment planning system installed at the audited institution was determined. The mean value taken over all tests performed was -0.1±1.0%. The measurements carried out with the ionization chamber were consistent with the dose determined by the alanine pellets with a mean deviation of -0.5±0.6%. CONCLUSION: The developed dosimetry audit method was successfully applied at five proton centers including various "turn-key" Cyclotron solutions by IBA, Varian and Mevion. This independent audit with extension to other tumour sites and use of the correspondent anthropomorphic phantoms may be proposed as part of a credentialing procedure for future clinical trials in proton beam therapy.


Subject(s)
Proton Therapy , Phantoms, Imaging , Protons , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
3.
Z Med Phys ; 31(2): 154-165, 2021 May.
Article in English | MEDLINE | ID: mdl-32747175

ABSTRACT

PURPOSE: This paper presents the implementation and comparison of two independent methods of beam monitor calibration in terms of number of particles for scanned proton and carbon ion beams. METHODS: In the first method, called the single-layer method, dose-area-product to water (DAPw) is derived from the absorbed dose to water determined using a Roos-type plane-parallel ionization chamber in single-energy scanned beams. This is considered the reference method for the beam monitor calibration in the clinically relevant proton and carbon energy ranges. In the second method, called the single-spot method, DAPw of a single central spot is determined using a Bragg-peak (BP) type large-area plane-parallel ionization chamber. Emphasis is given to the detailed characterization of the ionization chambers used for the beam monitor calibration. For both methods a detailed uncertainty budget on the DAPw determination is provided as well as on the derivation of the number of particles. RESULTS: Both calibration methods agreed on average within 1.1% for protons and within 2.6% for carbon ions. The uncertainty on DAPw using single-layer beams is 2.1% for protons and 3.1% for carbon ions with major contributions from the available values of kQ and the average spot spacing in both lateral directions. The uncertainty using the single-spot method is 2.2% for protons and 3.2% for carbon ions with major contributions from the available values of kQ and the non-uniformity of the BP chamber response, which can lead to a correction of up-to 3.2%. For the number of particles, an additional dominant uncertainty component for the mean stopping power per incident proton (or the CEMA) needs to be added. CONCLUSION: The agreement between both methods enhances confidence in the beam monitor calibration and the estimated uncertainty. The single-layer method can be used as a reference and the single-spot method is an alternative that, when more accumulated knowledge and data on the method becomes available, can be used as a redundant dose monitor calibration method. This work, together with the overview of information from the literature provided here, is a first step towards comprehensive information on the single-spot method.


Subject(s)
Radiometry , Synchrotrons , Calibration , Protons , Uncertainty
4.
Med Phys ; 47(12): 6531-6539, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33111370

ABSTRACT

PURPOSE: The local depth dose gradient and the displacement correction factor for Farmer-type ionization chambers are quantified for reference dosimetry at shallow depth in single-layer scanned proton fields. METHOD: Integrated radial profiles as a function of depth (IRPDs) measured at three proton therapy centers were smoothed by polynomial fits. The local relative depth dose gradient at measurement depths from 1 to 5 cm were derived from the derivatives of those fits. To calculate displacement correction factors, the best estimate of the effective point of measurement was derived from reviewing experimental and theoretical determinations reported in the literature. Displacement correction factors for the use of Farmer-type ionization chambers with their reference point (at the center of the cavity volume) positioned at the measurement depth were derived as a ratio of IRPD values at the measurement depth and at the effective point of measurement. RESULTS: Depth dose gradients are as low as 0.1-0.4% per mm at measurement depths from 1 to 5 cm in the highest clinical proton energies (with residual ranges higher than 15 cm) and increase to 1% per mm at a residual range of 4 cm and become larger than 3% per mm for residual ranges lower than 2 cm. The literature review shows that the effective point of measurement of Farmer-type ionization chambers is, similarly as for carbon ion beams, located 0.75 times the cavity radius closer to the beam origin as the center of the cavity. If a maximum displacement correction of 2% is deemed acceptable to be included in calculated beam quality correction factors, Farmer-type ICs can be used at measurements depths from 1 to 5 cm for which the residual range is 4 cm or larger. If one wants to use the same beam quality correction factors as applicable to the conventional measurement point for scattered beams, located at the center of the SOBP, the relative standard uncertainty on the assumption that the displacement correction factor is unity can be kept below 0.5% for measurement depths of at least 2 cm and for residual ranges of 15 cm or higher. CONCLUSION: The literature review confirmed that for proton beams the effective point of measurement of Farmer-type ionization chambers is located 0.75 times the cavity radius closer to the beam origin as the center of the cavity. Based on the findings in this work, three options can be recommended for reference dosimetry of scanned proton beams using Farmer-type ionization chambers: (a) positioning the effective point of measurement at the measurement depth, (b) positioning the reference point at the measurement depth and applying a displacement correction factor, and (c) positioning the reference point at the measurement depth without applying a displacement correction factor. Based on limiting the acceptable uncertainty on the gradient correction factor to 0.5% and the maximum deviation of the displacement perturbation correction factor from unity to 2%, the first two options can be allowed for residual ranges of at least 4 cm while the third option only for residual ranges of at least 15 cm.


Subject(s)
Proton Therapy , Protons , Farmers , Humans , Radiometry , Relative Biological Effectiveness
5.
Med Phys ; 47(2): 380-392, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31742730

ABSTRACT

PURPOSE: This paper describes the clinical implementation and medical commissioning of the MedAustron Particle Therapy Accelerator (MAPTA) for non-isocentric scanned proton beam treatments. METHODS: Medical physics involvement during technical commissioning work is presented. Acceptance testing procedures, including advanced measurement methods of intra-spill beam variations, are defined. Beam monitor calibration using two independent methods based on a dose-area product formalism is described. Emphasis is given to the medical commissioning work and the specificities related to non-isocentric irradiation, since a key feature of MedAustron is the routine delivery of non-isocentric scanned proton beam treatments. RESULTS: Key commissioning results and beam stability trend lines for more than 2 yr of clinical operation have been provided. Intra-spill beam range, size, and position variations were within specifications of 0.3 mm, 15%, and 0.5 mm, respectively. The agreement between two independent beam monitor calibration methods was better than 1.0%. Non-isocentric treatment delivery allowed lateral penumbra reduction of up to about 30%. Daily QA measurements of the beam range, size, position, and dose were always within 1 mm, 10%, 1 mm, and 2% from the baseline data, respectively. CONCLUSIONS: Non-isocentric treatments have been successfully implemented at MedAustron for routine scanned proton beam therapy using horizontal and vertical fixed beamlines. Up to now every patient was treated in non-isocentric conditions. The presented methodology to implement a new Scanned Ion Beam Delivery (SIBD) system into clinical routine for proton therapy may serve as a guidance for other centers.


Subject(s)
Particle Accelerators , Proton Therapy/instrumentation , Calibration
6.
Z Med Phys ; 28(3): 196-210, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29107440

ABSTRACT

The ratio of patients who need a treatment adaptation due to anatomical variations at least once during the treatment course is significantly higher in light ion beam therapy (LIBT) than in photon therapy. The ballistic behaviour of ion beams makes them more sensitive to changes. Hence, the delivery of LIBT has always been supported by state of art image guidance. On the contrary CBCT technology was adapted for LIBT quite late. Adaptive concepts are being implemented more frequently in photon therapy and also efficient workflows are needed for LIBT. The MedAustron Ion Beam Therapy Centre was designed to allow the clinical implementation of adaptive image-guided concepts. The aim of this paper is to describe the current status and the potential future use of the technology installed at MedAustron. Specifically addressed is the beam delivery system, the patient alignment system, the treatment planning system as well as the Record & Verify system. Finally, an outlook is given on how high quality X-ray imaging, MR image guidance, fast and automated treatment planning as well as in vivo range verification methods could be integrated.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy/instrumentation , Radiotherapy/methods , Cancer Care Facilities/organization & administration , Cancer Care Facilities/standards , Cancer Care Facilities/trends , Humans , Neoplasms/diagnostic imaging , Radiotherapy/standards , Radiotherapy/trends , Radiotherapy Planning, Computer-Assisted/trends
7.
Med Phys ; 45(1): 352-369, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29105791

ABSTRACT

PURPOSE: To describe the implementation of dosimetry equipment and phantoms into clinical practice of light ion beam therapy facilities. This work covers not only standard dosimetry equipment such as computerized water scanners, films, 2D-array, thimble, and plane parallel ionization chambers, but also dosimetry equipment specifically devoted to the pencil beam scanning delivery technique such as water columns, scintillating screens or multilayer ionization chambers. METHOD: Advanced acceptance testing procedures developed at MedAustron and complementary to the standard acceptance procedures proposed by the manufacturer are presented. Detailed commissioning plans have been implemented for each piece of dosimetry equipment and include an estimate of the overall uncertainty budget for the range of clinical use of each device. Some standard dosimetry equipment used in many facilities was evaluated in detail: for instance, the recombination of a 2D-array or the potential use of a microdiamond detector to measure reference transverse dose profiles in water in the core of the primary pencil beams and in the low-dose nuclear halo (over four orders of magnitude in dose). RESULTS: The implementation of dosimetry equipment as described in this work allowed determining absolute spot sizes and spot positions with an uncertainty better than 0.3 mm. Absolute ranges are determined with an uncertainty comprised of 0.2-0.6 mm, depending on the measured range and were reproduced with a maximum difference of 0.3 mm over a period of 12 months using three different devices. CONCLUSION: The detailed evaluation procedures of dosimetry equipment and phantoms proposed in this work could serve as a guidance for other medical physicists in ion beam therapy facilities and also in conventional radiation therapy.


Subject(s)
Ions/therapeutic use , Phantoms, Imaging , Radiometry/instrumentation , Humans , Pelvis , Radiation Dosimeters , Software , Uncertainty
8.
Med Phys ; 43(11): 5835, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27806608

ABSTRACT

PURPOSE: To propose a formalism for the reference dosimetry of scanned light-ion beams consistent with IAEA TRS-398 and Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)]. To identify machine-specific reference (msr) fields and plan-class specific reference (pcsr) fields consistent with the definitions given by Alfonso et al. To review the literature of beam monitor calibration in scanned beams using three different methods in terms of this common formalism. METHODS: Four types of msr fields are identified as those that are meant to calibrate the beam monitor for scanned beams with particular energies. Two types of pcsr fields are identified as those that are meant to apply one or more tuning factors to the entire delivery chain. RESULTS: The formalism establishes the energy-dependent relation between the number of particles incident on the phantom surface and the beam monitor reading and distinguishes three routes to determine the beam monitor calibration function: (i) the use of a calibrated reference ionization chamber in a single-layer scanned beam, (ii) the use of a cross-calibrated large-area parallel plate ionization chamber in a single-energy beamlet, and (iii) the use of a calibrated reference ionization chamber in a box field to adjust a calibration curve obtained by a Faraday cup or an ionization chamber. Examples of all three methods and comparisons between them from the literature are analysed. CONCLUSIONS: The formalism can form the basis of future dosimetry recommendations for scanned particle beams and the analysis of the literature data in terms of this formalism can form the basis of data compilations for the application of the dosimetry procedures.


Subject(s)
Radiometry/instrumentation , Calibration , Radiometry/standards , Reference Standards , Uncertainty
9.
Phys Med Biol ; 61(17): 6585-93, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27535790

ABSTRACT

We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that [Formula: see text]-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.


Subject(s)
Protons , Radiometry , Calibration , Calorimetry , Water/chemistry
11.
Lancet Oncol ; 16(2): e93-e100, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25638685

ABSTRACT

Charged particle therapy is generally regarded as cutting-edge technology in oncology. Many proton therapy centres are active in the USA, Europe, and Asia, but only a few centres use heavy ions, even though these ions are much more effective than x-rays owing to the special radiobiological properties of densely ionising radiation. The National Institute of Radiological Sciences (NIRS) Chiba, Japan, has been treating cancer with high-energy carbon ions since 1994. So far, more than 8000 patients have had this treatment at NIRS, and the centre thus has by far the greatest experience in carbon ion treatment worldwide. A panel of radiation oncologists, radiobiologists, and medical physicists from the USA and Europe recently completed peer review of the carbon ion therapy at NIRS. The review panel had access to the latest developments in treatment planning and beam delivery and to all updated clinical data produced at NIRS. A detailed comparison with the most advanced results obtained with x-rays or protons in Europe and the USA was then possible. In addition to those tumours for which carbon ions are known to produce excellent results, such as bone and soft-tissue sarcoma of the skull base, head and neck, and pelvis, promising data were obtained for other tumours, such as locally recurrent rectal cancer and pancreatic cancer. The most serious impediment to the worldwide spread of heavy ion therapy centres is the high initial capital cost. The 20 years of clinical experience at NIRS can help guide strategic decisions on the design and construction of new heavy ion therapy centres.


Subject(s)
Carbon/therapeutic use , Heavy Ion Radiotherapy , Neoplasms/radiotherapy , Humans , Japan , Time Factors
12.
Radiother Oncol ; 111(3): 451-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25012644

ABSTRACT

PURPOSE: To compare photons, protons and carbon ions and their combinations for treatment of atypical and anaplastical skull base meningioma. MATERIAL AND METHODS: Two planning target volumes (PTVinitial/PTVboost) were delineated for 10 patients (prescribed doses 50 Gy(RBE) and 10 Gy(RBE)). Plans for intensity modulated photon (IMXT), proton (IMPT) and carbon ion therapy ((12)C) were generated assuming a non-gantry scenario for particles. The following combinations were compared: IMXT+IMXT/IMPT/(12)C; IMPT+IMPT/(12)C; and (12)C+(12)C. Plan quality was evaluated by target conformity and homogeneity (CI, HI), V95%, D2% and D50% and dose-volume-histogram (DVH) parameters for organs-at-risk (OAR). If dose escalation was possible, it was performed until OAR tolerance levels were reached. RESULTS: CI was worst for IMXT. HI<0.05±0.01 for (12)C was significantly better than for IMXT. For all treatment options dose escalation above 60 Gy(RBE) was possible for four patients, but impossible for six patients. Compared to IMXT+IMXT, ion beam therapy showed an improved sparing for most OARs, e.g. using protons and carbon ions D50% was reduced by more than 50% for the ipsilateral eye and the brainstem. CONCLUSION: Highly conformal IMPT and (12)C plans could be generated with a non-gantry scenario. Improved OAR sparing favors both sole (12)C and/or IMPT plans.


Subject(s)
Meningeal Neoplasms/radiotherapy , Meningioma/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Skull Base Neoplasms/radiotherapy , Adult , Aged , Aged, 80 and over , Carbon/chemistry , Female , Humans , Male , Middle Aged , Organs at Risk , Photons/therapeutic use , Proton Therapy
13.
Radiother Oncol ; 108(1): 99-106, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23886591

ABSTRACT

BACKGROUND AND PURPOSE: In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. MATERIALS AND METHODS: The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm(3)). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm(3). In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). RESULTS: The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was -2.4 ± 0.9% (1σ) for protons and -2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of -1.7% for protons and -1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. CONCLUSIONS: Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is feasible. If further studies show similar results, this dosimetric audit could be implemented as a credentialing procedure for clinical proton and carbon beam delivery.


Subject(s)
Alanine/chemistry , Heavy Ion Radiotherapy , Medical Audit/methods , Proton Therapy , Radiotherapy Dosage , Humans , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted
14.
Radiother Oncol ; 89(3): 338-46, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18701178

ABSTRACT

BACKGROUND AND PURPOSE: The methodology developed by IAEA for dosimetric quality control of treatment planning systems has been tested in different hospitals through a pilot study. The aim was to verify the methodology and observe the range of deviations between planned and delivered doses in 3D conformal radiotherapy in situations close to a clinical setting. MATERIAL AND METHODS: The methodology was based on an anthropomorphic phantom representing the human thorax, and simulates the whole chain of external beam radiotherapy treatment planning activities. The phantom was scanned using computed tomography and eight test cases were planned on treatment planning systems which imitate different irradiation geometries found in conformal radiotherapy. The doses were measured with ion chambers, and the deviation between measured and treatment planning system calculated doses was reported. This methodology, which employs the same phantom and the same set of test cases, was tested in 17 different hospitals which were using 14 different algorithms/inhomogeneity correction methods implemented in different treatment planning systems. RESULTS: A total of 53 clinical test case datasets for different energies and calculation algorithms were produced. Most of the systems with advanced algorithms complied with predefined agreement criteria. Dose differences more than 20% were discovered for some of the simple algorithms and high energy X-ray beams. The number of deviations outside agreement criteria increases with the beam energy and decreases with advancement of the treatment planning system calculation algorithm. CONCLUSIONS: Large deviations exist in some simple dose calculation algorithms, therefore more advanced algorithms would be preferable and therefore should be implemented in clinical practice. The test cases that could be performed in reasonable time would help the users to appreciate the possibilities of their system and understand its limitations.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Algorithms , Humans , Phantoms, Imaging , Pilot Projects , Quality Control , Radiotherapy, Conformal , Thorax/radiation effects
15.
Rev. panam. salud pública ; 20(2/3): 161-172, ago.-sept. 2006. graf, tab
Article in English | LILACS | ID: lil-441031

ABSTRACT

Since 1969 the International Atomic Energy Agency and the World Health Organization (along with the Pan American Health Organization, working with countries in Latin America and the Caribbean) have operated postal dosimetry audits based on thermoluminescent dosimetry (TLD) for radiotherapy centers. The purpose of these audits is to provide an independent dosimetry check of radiation beams used to treat cancer patients. The success of radiotherapy treatment depends on accurate dosimetry. Over the period of 1969 through 2003 the calibration of approximately 5 200 photon beams in over 1 300 radiotherapy centers in 115 countries worldwide was checked. Of these audits, 36 percent were performed in Latin America and the Caribbean, with results improving greatly over the years. Unfortunately, in several instances large TLD deviations have confirmed clinical observations of inadequate dosimetry practices in hospitals in various parts of the world or even accidents in radiotherapy, such as the one that occurred in Costa Rica in 1996. Hospitals or centers that operate radiotherapy services without qualified medical physicists or without dosimetry equipment have poorer results than do hospitals or centers that are properly staffed and equipped. When centers have poor TLD results, a follow-up program can help them improve their dosimetry status. However, to achieve audit results that are comparable to those for centers in industrialized countries, additional strengthening of the radiotherapy infrastructure in Latin America and the Caribbean is needed.


Subject(s)
Humans , Thermoluminescent Dosimetry/methods , Caribbean Region , Latin America , Medical Audit/methods , Pan American Health Organization , Postal Service , Program Evaluation , Radiation Oncology/standards , Radiation Oncology/trends , Radiotherapy Dosage , Thermoluminescent Dosimetry/trends
16.
Rev Panam Salud Publica ; 20(2-3): 161-72, 2006.
Article in English | MEDLINE | ID: mdl-17199911

ABSTRACT

Since 1969 the International Atomic Energy Agency and the World Health Organization (along with the Pan American Health Organization, working with countries in Latin America and the Caribbean) have operated postal dosimetry audits based on thermoluminescent dosimetry (TLD) for radiotherapy centers. The purpose of these audits is to provide an independent dosimetry check of radiation beams used to treat cancer patients. The success of radiotherapy treatment depends on accurate dosimetry. Over the period of 1969 through 2003 the calibration of approximately 5,200 photon beams in over 1,300 radiotherapy centers in 115 countries worldwide was checked. Of these audits, 36% were performed in Latin America and the Caribbean, with results improving greatly over the years. Unfortunately, in several instances large TLD deviations have confirmed clinical observations of inadequate dosimetry practices in hospitals in various parts of the world or even accidents in radiotherapy, such as the one that occurred in Costa Rica in 1996. Hospitals or centers that operate radiotherapy services without qualified medical physicists or without dosimetry equipment have poorer results than do hospitals or centers that are properly staffed and equipped. When centers have poor TLD results, a follow-up program can help them improve their dosimetry status. However, to achieve audit results that are comparable to those for centers in industrialized countries, additional strengthening of the radiotherapy infrastructure in Latin America and the Caribbean is needed.


Subject(s)
Thermoluminescent Dosimetry/methods , Caribbean Region , Humans , Latin America , Medical Audit/methods , Pan American Health Organization , Postal Service , Program Evaluation , Radiation Oncology/standards , Radiation Oncology/trends , Radiotherapy Dosage , Thermoluminescent Dosimetry/trends
18.
Radiother Oncol ; 69(1): 91-7, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14597361

ABSTRACT

BACKGROUND AND PURPOSE: The IAEA/WHO TLD postal programme for external audits of the calibration of high-energy photon beams used in radiotherapy has been in operation since 1969. This work presents a survey of the 1317 TLD audits carried out during 1998-2001. The TLD results are discussed from the perspective of the dosimetry practices in hospitals in developing countries, based on the information provided by the participants in their TLD data sheets. MATERIALS AND METHODS: A detailed analysis of the TLD data sheets is systematically performed at the IAEA. It helps to trace the source of any discrepancy between the TLD measured dose and the user stated dose, and also provides information on equipment, dosimetry procedures and the use of codes of practice in the countries participating in the IAEA/WHO TLD audits. RESULT: The TLD results are within the 5% acceptance limit for 84% of the participants. The results for accelerator beams are typically better than for Co-60 units. Approximately 75% of participants reported dosimetry data, including details on their procedure for dose determination from ionisation chamber measurements. For the remaining 25% of hospitals, who did not submit these data, the results are poorer than the global TLD results. Most hospitals have Farmer type ionisation chambers calibrated in terms of air kerma by a standards laboratory. Less than 10% of the hospitals use new codes of practice based on standards of absorbed dose to water. CONCLUSION: Despite the differences in dosimetry equipment, traceability to different standards laboratories and uncertainties arising from the use of various dosimetry codes of practice, the determination of absorbed dose to water for photon beams typically agrees within 2% among hospitals. Correct implementation of any of the dosimetry protocols should ensure that significant errors in dosimetry are avoided.


Subject(s)
Developing Countries , Quality Assurance, Health Care , Radiotherapy, High-Energy/standards , Thermoluminescent Dosimetry , Calibration , Data Collection , Hospitals , Humans , Radiotherapy Dosage , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...