Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; : e2400114, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900588

ABSTRACT

The design and synthesis of a library of 21 novel benzenesulfonamide-bearing 3-functionalized pyrazole-linked 1,2,3-triazole derivatives as dual inhibitors of cathepsin B and carbonic anhydrase enzymes are reported. The target 1,2,3-triazole-linked pyrazolic esters (16) were synthesized by the condensation of 1,2,3-triazolic diketo esters with 4-hydrazinobenzenesulfonamide hydrochloride, and these were further converted into the corresponding carboxylic acid (17) and carboxamide (18) analogs. The synthesized compounds were assayed in vitro for their inhibition potential against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. They were found to be potent inhibitors at the low nanomolar level against the cancer-related hCA IX and XII and to be selective towards the cytosolic isoform hCA I. The physiologically important isoform hCA II was potently inhibited by all the newly synthesized compounds showing KI values ranging between 0.8 and 561.5 nM. The ester derivative 16c having 4-fluorophenyl (KI = 5.2 nM) was the most potent inhibitor of hCA IX, and carboxamide derivative 18b (KI = 2.2 nM) having 4-methyl substituted phenyl was the most potent inhibitor of hCA XII. The newly synthesized compounds exhibited potent cathepsin B inhibition at 10-7 M concentration. In general, the carboxamide derivatives (18) showed higher % inhibition as compared with the corresponding ester derivatives (16) and carboxylic acid derivatives (17) for cathepsin B. The interactions of the target compounds with the active sites of cathepsin B and CA were studied through molecular docking studies. Further, the in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of the target compounds were also studied.

2.
Arch Pharm (Weinheim) ; : e2400157, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713910

ABSTRACT

Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.

3.
Arch Pharm (Weinheim) ; 357(3): e2300372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38012535

ABSTRACT

Herein, we report the design and synthesis of a library of 28 new 1,2,3-triazole derivatives bearing carboxylic acid and ester moieties as dual inhibitors of carbonic anhydrase (CA) and cathepsin B enzymes. The synthesised compounds were assayed in vitro for their inhibition potential against four human CA (hCA) isoforms, I, II, IX and XII. The carboxylic acid derivatives displayed low micromolar inhibition against hCA II, IX and XII in contrast to the ester derivatives. Most of the target compounds showed poor inhibition against the hCA I isoform. 4-Fluorophenyl appended carboxylic acid derivative 6c was found to be the most potent inhibitor of hCA IX and hCA XII with a KI value of 0.7 µM for both the isoforms. The newly synthesised compounds showed dual inhibition towards CA as well as cathepsin B. The ester derivatives exhibited higher % inhibition at 10-7 M concentration as compared with the corresponding carboxylic acid derivatives against cathepsin B. The results from in silico studies of the target compounds with the active site of cathepsin B were found in good correlation with the in vitro results. Moreover, two compounds, 5i and 6c, showed cytotoxic activity against A549 lung cancer cells, with IC50 values lower than 100 µM.


Subject(s)
Carbonic Anhydrases , Carboxylic Acids , Humans , Carboxylic Acids/pharmacology , Esters/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Cathepsin B , Structure-Activity Relationship , Triazoles/pharmacology , Protein Isoforms
4.
Future Med Chem ; 15(20): 1843-1863, 2023 10.
Article in English | MEDLINE | ID: mdl-37877291

ABSTRACT

Background: Inhibition of human carbonic anhydrase (hCA) isoforms IX and XII with concurrent inhibition of cathepsin B is a promising approach for targeting cancers. Methods/results: 28 keto-bridged dual triazole-containing benzenesulfonamides were synthesized and tested, following the multitarget approach, for their efficacy as inhibitors of cathepsin B and hCA isoforms (I, II, IX, XII). The synthesized compounds showed excellent inhibition of CA isoforms (IX and XII) and cathepsin B. Compound 8i exhibited better and more selective inhibition of the cancer-associated isoform hCA IX as compared with acetazolamide (reference drug) and SLC-0111 (potent lead as carbonic anhydrase inhibitor). Molecular docking studies were also carried out. Conclusion: The present work gives important generalizations for the development of isoform-selective hCA inhibitors endowed with anti-cathepsin properties.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , Triazoles/pharmacology , Cathepsin B , Carbonic Anhydrase Inhibitors/pharmacology , Protein Isoforms , Benzenesulfonamides
5.
Arch Pharm (Weinheim) ; 356(2): e2200439, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36344431

ABSTRACT

Inhibition of human carbonic anhydrase (hCA) isoform IX with concurrent induction of apoptosis is a promising approach for targeting cancer in humans. Prompted by the scope, novel benzenesulfonamides containing the 1,2,3-triazolylthiazolotriazole tail were synthesized and screened as inhibitors of hCA isoforms I, II, IV, and IX. The tumor-associated isoform hCA IX was strongly inhibited by the sulfonamides reported here with KI values ranging from 45 nM to 1.882 µM. Overall, nine compounds showed hCA IX inhibition with KI < 250 nM. The glaucoma-associated isoform hCA II was moderately inhibited while the cytosolic isoform hCA I and membrane-bound isoform hCA IV were weakly inhibited by the synthesized sulfonamides. Compound 6Ac (KI = 3.6 nM) was found to be an almost three times more potent inhibitor of hCA II as compared to the standard drug acetazolamide (KI = 12.1 nM). The selective hCA IX inhibitors were further studied for their apoptotic efficacy in goat ovarian cells and showed better results as compared to the control. A comparative study of previously synthesized compounds and molecular docking study of representative compounds revealed some important generalizations that could prove beneficial in further investigations of isoform-selective hCA inhibitors.


Subject(s)
Carbonic Anhydrase Inhibitors , Neoplasms , Humans , Carbonic Anhydrase Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Sulfonamides/pharmacology , Carbonic Anhydrase I/metabolism , Apoptosis , Benzenesulfonamides
6.
Eur J Med Chem ; 183: 111698, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31539777

ABSTRACT

A library of twenty two novel 1,2,3-triazole benzenesulfonamides incorporating thiosemicarbazide, 5(4H)-thione-1,2,4-triazole and variously substituted phenacyl appended 1,2,4-triazole as tail were designed, synthesized and assessed for their efficacy as inhibitors against carbonic anhydrase human (h) isoforms hCA I, II, IV and IX. The physiologically important and off-target cytosolic isoform hCA I was weakly inhibited by most of the newly synthesized sulfonamides while the glaucoma associated isoform hCA II was moderately inhibited with KIs spanning in low nanomolar range (KI = 8.0 nM-0.903 µM). The membrane bound isoform hCA IV, which is known to be involved in glaucoma and retinitis pigmentosa among others, was strongly inhibited by all newly synthesized sulfonamides out of which nine compounds inhibited isoform hCA IV even more effectively as compared to standard drug acetazolamide (AAZ). The membrane bound isoform hCA IX, associated with growth of tumor cells, was moderately inhibited with KIs ranging between 51 nM-3.198 µM. The effect of appending variously substituted tails on heterocyclic moieties over inhibition potential of synthesized sulfonamides is also disclosed which can be of further interest in pharmacological studies for exploring synthesis of isoform selective inhibitors.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Triazoles/pharmacology , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase IV/antagonists & inhibitors , Carbonic Anhydrase IV/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Triazoles/chemistry , Benzenesulfonamides
7.
Eur J Med Chem ; 155: 545-551, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29909339

ABSTRACT

In a quest to discover new biologically active compounds, a series of twenty novel heterocyclic derivatives substituted at position 5 with -H (7a-7j) or -CF3 (8a-8j), bearing benzenesulfonamide at N-1 position and various aroyl groups at position 4 of the 1,2,3-triazole ring was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibition potential against four human (h) isoforms hCA I, II, IV and IX. All the compounds (7a-7j and 8a-8j) were synthesized via [3+2] cycloaddition reaction from 4-azidobenzenesulfonamide. Interestingly, compounds 7a-7j were prepared in one pot manner via enaminone intermediate using novel methodology. All the newly synthesized compounds (7a-7j &8a-8j) were found to be excellent inhibitors of edema related isoform hCA I with their inhibition constant (Ki) ranging from 30.1 to 86.8 nM as compared to standard drug acetazolamide (AAZ) with Ki = 250 nM. Further it was found that most of tested compounds were weaker inhibitors of isoform, hCA II although compounds 7b, 7d-7e, 8a, 8d-8f, 8i (mostly with electron withdrawing substituents) have shown better inhibition potential (Ki < 50 nM). Against glaucoma associated hCA IV, compound 7d was found to be better inhibitor (Ki = 52.4 nM) than AAZ (Ki = 74 nM) while against tumor associated hCA IX, all the compounds have shown moderate inhibition potential. Present study have added one more step in exploring the 1,2,3-triazlole moiety in the medicinal field.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Drug Design , Sulfonamides/pharmacology , Triazoles/pharmacology , Antigens, Neoplasm/metabolism , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase IV/antagonists & inhibitors , Carbonic Anhydrase IV/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Triazoles/chemistry , Benzenesulfonamides
8.
Eur J Med Chem ; 150: 678-686, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29571155

ABSTRACT

The design, synthesis and biological evaluation of a library of 1,2,3-triazole carboxylates incorporating carboxylic acid, hydroxymethyl, carboxylic acid hydrazide, carboxamide and benzenesulfonamide moieties is disclosed. All the novel compounds were investigated for their inhibition potential against carbonic anhydrase (CA, EC 4.2.1.1) human (h) isoforms hCA I, II, IV and IX, well established drug targets. The cytosolic isoform hCA I was inhibited with Ki's ranging between 53.2 nM and 7.616 µM whereas the glaucoma associated cytosolic isoform hCA II was inhibited with Ki's in the range 21.8 nM-0.807 µM. The membrane bound isoform hCA IV, involved in glaucoma and retinitis pigmentosa among others, was effectively inhibited by some of these compounds with Ki < 60 nM, better than the reference drug acetazolamide (AAZ). The tumor associated isoform hCA IX, a recently validated antitumor/antimetastatic drug target, was also effectively inhibited by some of the new sulfonamides, which possess thus the potential to be used as tools for exploring in more details the selective inhibition of hCAs involved in various pathologies.


Subject(s)
Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Triazoles/pharmacology , Antigens, Neoplasm/metabolism , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry , Benzenesulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...