Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 94: 129449, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591317

ABSTRACT

The discovery of disease-modifying therapies for Parkinson's Disease (PD) represents a critical need in neurodegenerative medicine. Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) are risk factors for the development of PD, and some of these mutations have been linked to increased LRRK2 kinase activity and neuronal toxicity in cellular and animal models. Furthermore, LRRK2 function as a scaffolding protein in several pathways has been implicated as a plausible mechanism underlying neurodegeneration caused by LRRK2 mutations. Given that both the kinase activity and scaffolding function of LRRK2 have been linked to neurodegeneration, we developed proteolysis-targeting chimeras (PROTACs) targeting LRRK2. The degrader molecule JH-XII-03-02 (6) displayed high potency and remarkable selectivity for LRKK2 when assessed in a of 468 panel kinases and serves the dual purpose of eliminating both the kinase activity as well as the scaffolding function of LRRK2.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Animals , Models, Animal , Mutation , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Phosphorylation , Proteolysis Targeting Chimera , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors
2.
ACS Med Chem Lett ; 13(4): 577-585, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35450378

ABSTRACT

Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is a therapeutic target of interest due to the roles it plays in both neurological diseases and cancer. We present the development of the first macrocyclic inhibitors of DYRK1A. Initial lead inhibitor JH-XIV-68-3 (3) displayed selectivity for DYRK1A and close family member DYRK1B in biochemical and cellular assays, and demonstrated antitumor efficacy in head and neck squamous cell carcinoma (HNSCC) cell lines. However, we noted that it suffered from rapid aldehyde oxidase (AO)-mediated metabolism. To overcome this liability, we generated a derivative (JH-XVII-10 (10)), where fluorine was introduced to block the 2-position of the azaindole and render the molecule resistant to AO activity. We showed that 10 maintains remarkable potency and selectivity in biochemical and cellular assays as well as antitumor efficacy in HNSCC cell lines and improved metabolic stability. Therefore, 10 represents a promising new scaffold for developing DYRK1A-targeting chemical probes and therapeutics.

3.
ACS Med Chem Lett ; 12(11): 1689-1693, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34795857

ABSTRACT

CDK8 and its paralog CDK19 are cyclin-dependent kinases that are core components of the so-called Mediator complex that has essential roles as a positive and negative regulator of gene expression. Several efforts to develop inhibitors have yielded natural and synthetic ATP-competitive compounds including cortistatin A, Sel120, BCD-115, CCT251921 (1), and MSC2530818 (2). Here, we used a hybridization approach starting from CCT251921 and MSC2530818 to derive new inhibitors with the aim of developing highly potent and selective inhibitors of CDK8/19. Initial compounds suffered from rapid aldehyde oxidase-mediated metabolism. This liability was overcome by utilizing a pyrazolopyridine hinge binder with a chlorine at the C-3 position. These efforts resulted in JH-XVI-178 (compound 15), a highly potent and selective inhibitor of CDK8/19 that displays low clearance and moderate oral pharmacokinetic properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...