Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13201, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580480

ABSTRACT

Exposure to particulate matter less than 2.5 µm in diameter (PM2.5) is a cause of concern in cities and major emission regions of northern India. An intensive field campaign involving the states of Punjab, Haryana and Delhi national capital region (NCR) was conducted in 2022 using 29 Compact and Useful PM2.5 Instrument with Gas sensors (CUPI-Gs). Continuous observations show that the PM2.5 in the region increased gradually from < 60 µg m-3 in 6-10 October to up to 500 µg m-3 on 5-9 November, which subsequently decreased to about 100 µg m-3 in 20-30 November. Two distinct plumes of PM2.5 over 500 µg m-3 are tracked from crop residue burning in Punjab to Delhi NCR on 2-3 November and 10-11 November with delays of 1 and 3 days, respectively. Experimental campaign demonstrates the advantages of source region observations to link agricultural waste burning and air pollution at local to regional scales.

2.
Sci Rep ; 12(1): 16928, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209318

ABSTRACT

Climate change and its impact on agriculture productivity vary among crops and regions. The southeastern United States (SE-US) is agro-ecologically diversified, economically dependent on agriculture, and mostly overlooked by agroclimatic researchers. The objective of this study was to compute the effect of climatic variables; daily maximum temperature (Tmax), daily minimum temperature (Tmin), and rainfall on the yield of major cereal crops i.e., corn (Zea mays L.), rice (Oryza sativa L.), and wheat (Triticum aestivum L.) in SE-US. A fixed-effect model (panel data approach) was used by applying the production function on panel data from 1980 to 2020 from 11 SE-US states. An asymmetrical warming pattern was observed, where nocturnal warming was 105.90%, 106.30%, and 32.14%, higher than the diurnal warming during corn, rice, and wheat growing seasons, respectively. Additionally, a shift in rainfall was noticed ranging from 19.2 to 37.2 mm over different growing seasons. Rainfall significantly reduced wheat yield, while, it had no effect on corn and rice yields. The Tmax and Tmin had no significant effect on wheat yield. A 1 °C rise in Tmax significantly decreased corn (- 34%) and rice (- 8.30%) yield which was offset by a 1 °C increase in Tmin increasing corn (47%) and rice (22.40%) yield. Conclusively, overall temperature change of 1 °C in the SE-US significantly improved corn yield by 13%, rice yield by 14.10%, and had no effect on wheat yield.


Subject(s)
Oryza , Triticum , Agriculture , Climate Change , Crops, Agricultural , Temperature , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...